These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21392283)

  • 21. Immunohistochemical distribution of calretinin and calbindin (D-28k) in the brain of the cladistian Polypterus senegalus.
    Graña P; Folgueira M; Huesa G; Anadón R; Yáñez J
    J Comp Neurol; 2013 Aug; 521(11):2454-85. PubMed ID: 23296683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The diencephalon of the channel catfish, Ictalurus punctatus. I. Nuclear organization.
    Striedter GF
    Brain Behav Evol; 1990; 36(6):329-54. PubMed ID: 2073573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Afferent connections of the corpus cerebelli in holocentrid teleosts.
    Xue HG; Yamamoto N; Yang CY; Imura K; Ito H
    Brain Behav Evol; 2004; 64(4):242-58. PubMed ID: 15319554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organization of the serotonergic system in the central nervous system of two basal actinopterygian fishes: the Cladistians Polypterus senegalus and Erpetoichthys calabaricus.
    López JM; González A
    Brain Behav Evol; 2014; 83(1):54-76. PubMed ID: 24577053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phylogeny of putative cholinergic visual pathways through the pretectum to the hypothalamus in teleost fish.
    Wullimann MF; Meyer DL
    Brain Behav Evol; 1990; 36(1):14-29. PubMed ID: 2257477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes.
    Bi X; Wang K; Yang L; Pan H; Jiang H; Wei Q; Fang M; Yu H; Zhu C; Cai Y; He Y; Gan X; Zeng H; Yu D; Zhu Y; Jiang H; Qiu Q; Yang H; Zhang YE; Wang W; Zhu M; He S; Zhang G
    Cell; 2021 Mar; 184(5):1377-1391.e14. PubMed ID: 33545088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The diencephalon of the Pacific herring, Clupea harengus: cytoarchitectonic analysis.
    Butler AB; Northcutt RG
    J Comp Neurol; 1993 Feb; 328(4):527-46. PubMed ID: 8429133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Projections of the optic tectum in two teleost species.
    Ebbesson SO; Vanegas H
    J Comp Neurol; 1976 Jan; 165(2):161-80. PubMed ID: 1245611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ascending gustatory pathways to the telencephalon in goldfish.
    Kato T; Yamada Y; Yamamoto N
    J Comp Neurol; 2012 Aug; 520(11):2475-99. PubMed ID: 22247053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of a teleost tetraploidization on neuropeptide Y receptor gene repertoire in ray-finned fishes.
    Salaneck E; Larson ET; Larsson TA; Larhammar D
    Ann N Y Acad Sci; 2005 Apr; 1040():457-9. PubMed ID: 15891088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The organization of retinal projections to the diencephalon and pretectum in the cichlid fish, Haplochromis burtoni.
    Presson J; Fernald RD; Max M
    J Comp Neurol; 1985 May; 235(3):360-74. PubMed ID: 3998216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tetrapod V1R-like ora genes in an early-diverging ray-finned fish species: the canonical six ora gene repertoire of teleost fish resulted from gene loss in a larger ancestral repertoire.
    Zapilko V; Korsching SI
    BMC Genomics; 2016 Jan; 17():83. PubMed ID: 26818853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny.
    Raincrow JD; Dewar K; Stocsits C; Prohaska SJ; Amemiya CT; Stadler PF; Chiu CH
    J Exp Zool B Mol Dev Evol; 2011 Sep; 316(6):451-64. PubMed ID: 21688387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The diencephalon of the Pacific herring, Clupea harengus: retinofugal projections to the diencephalon and optic tectum.
    Northcutt RG; Butler AB
    J Comp Neurol; 1993 Feb; 328(4):547-61. PubMed ID: 8381443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of somatostatin in neurons of the central posterior/prepacemaker nucleus projecting to the preglomerular nucleus: immunohistochemical evidence for a non-synaptic function.
    Zupanc GK; Horschke I; Stroh T
    Neurosci Lett; 1997 Mar; 224(2):123-6. PubMed ID: 9086472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observations on the radiation of lobe-finned fishes, ray-finned fishes, and cartilaginous fishes: phylogeny of the opioid/orphanin gene family and the 2R hypothesis.
    Dores RM; Majeed Q; Komorowski L
    Gen Comp Endocrinol; 2011 Jan; 170(2):253-64. PubMed ID: 20937278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes.
    Pose-Méndez S; Candal E; Adrio F; Rodríguez-Moldes I
    J Comp Neurol; 2014 Jan; 522(1):131-68. PubMed ID: 23818330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localization of calcium-binding protein (calretinin, 29 kD) in the brain and pituitary gland of teleost fish: an immunohistochemical study.
    Jadhao AG; Malz CR
    Neurosci Res; 2007 Nov; 59(3):265-76. PubMed ID: 17714817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The organization of the diencephalon and the pretectum in the cichlid fish, Haplochromis burtoni.
    Fernald RD; Shelton LC
    J Comp Neurol; 1985 Aug; 238(2):202-17. PubMed ID: 4044911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole Genome Sequencing of the Asian Arowana (Scleropages formosus) Provides Insights into the Evolution of Ray-Finned Fishes.
    Austin CM; Tan MH; Croft LJ; Hammer MP; Gan HM
    Genome Biol Evol; 2015 Oct; 7(10):2885-95. PubMed ID: 26446539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.