BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21392577)

  • 1. Phosphorylation, protein kinases and ADPKD.
    Li X
    Biochim Biophys Acta; 2011 Oct; 1812(10):1219-24. PubMed ID: 21392577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The heteromeric PC-1/PC-2 polycystin complex is activated by the PC-1 N-terminus.
    Ha K; Nobuhara M; Wang Q; Walker RV; Qian F; Schartner C; Cao E; Delling M
    Elife; 2020 Nov; 9():. PubMed ID: 33164752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular advances in autosomal dominant polycystic kidney disease.
    Gallagher AR; Germino GG; Somlo S
    Adv Chronic Kidney Dis; 2010 Mar; 17(2):118-30. PubMed ID: 20219615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double inhibition of cAMP and mTOR signalling may potentiate the reduction of cell growth in ADPKD cells.
    de Stephanis L; Bonon A; Varani K; Lanza G; GafĂ  R; Pinton P; Pema M; Somlo S; Boletta A; Aguiari G
    Clin Exp Nephrol; 2017 Apr; 21(2):203-211. PubMed ID: 27278932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR.
    Dere R; Wilson PD; Sandford RN; Walker CL
    PLoS One; 2010 Feb; 5(2):e9239. PubMed ID: 20169078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperphosphorylation of polycystin-2 at a critical residue in disease reveals an essential role for polycystin-1-regulated dephosphorylation.
    Streets AJ; Wessely O; Peters DJ; Ong AC
    Hum Mol Genet; 2013 May; 22(10):1924-39. PubMed ID: 23390129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycystin-1C terminus cleavage and its relation with polycystin-2, two proteins involved in polycystic kidney disease.
    Bertuccio CA; Caplan MJ
    Medicina (B Aires); 2013; 73(2):155-62. PubMed ID: 23570767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Mechanisms of ADPKD.
    Kim DY; Park JH
    Adv Exp Med Biol; 2016; 933():13-22. PubMed ID: 27730431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2).
    Veldhuisen B; Spruit L; Dauwerse HG; Breuning MH; Peters DJ
    Eur J Hum Genet; 1999 Dec; 7(8):860-72. PubMed ID: 10602361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A polycystin-centric view of cyst formation and disease: the polycystins revisited.
    Ong AC; Harris PC
    Kidney Int; 2015 Oct; 88(4):699-710. PubMed ID: 26200945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receptor protein tyrosine phosphatases are novel components of a polycystin complex.
    Boucher CA; Ward HH; Case RL; Thurston KS; Li X; Needham A; Romero E; Hyink D; Qamar S; Roitbak T; Powell S; Ward C; Wilson PD; Wandinger-Ness A; Sandford RN
    Biochim Biophys Acta; 2011 Oct; 1812(10):1225-38. PubMed ID: 21126580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular pathogenesis of autosomal dominant polycystic kidney disease.
    Yoder BK; Mulroy S; Eustace H; Boucher C; Sandford R
    Expert Rev Mol Med; 2006 Jan; 8(2):1-22. PubMed ID: 16515728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular Loops Are Essential for the Assembly and Function of Polycystin Receptor-Ion Channel Complexes.
    Salehi-Najafabadi Z; Li B; Valentino V; Ng C; Martin H; Yu Y; Wang Z; Kashyap P; Yu Y
    J Biol Chem; 2017 Mar; 292(10):4210-4221. PubMed ID: 28154010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1.
    Distefano G; Boca M; Rowe I; Wodarczyk C; Ma L; Piontek KB; Germino GG; Pandolfi PP; Boletta A
    Mol Cell Biol; 2009 May; 29(9):2359-71. PubMed ID: 19255143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nephrocystin-1 forms a complex with polycystin-1 via a polyproline motif/SH3 domain interaction and regulates the apoptotic response in mammals.
    Wodarczyk C; Distefano G; Rowe I; Gaetani M; Bricoli B; Muorah M; Spitaleri A; Mannella V; Ricchiuto P; Pema M; Castelli M; Casanova AE; Mollica L; Banzi M; Boca M; Antignac C; Saunier S; Musco G; Boletta A
    PLoS One; 2010 Sep; 5(9):e12719. PubMed ID: 20856870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular activation triggered by the autosomal dominant polycystic kidney disease gene product PKD2.
    Arnould T; Sellin L; Benzing T; Tsiokas L; Cohen HT; Kim E; Walz G
    Mol Cell Biol; 1999 May; 19(5):3423-34. PubMed ID: 10207066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autosomal Dominant Polycystic Kidney Disease: A Path Forward.
    Rangan GK; Lopez-Vargas P; Nankivell BJ; Tchan M; Tong A; Tunnicliffe DJ; Savige J
    Semin Nephrol; 2015 Nov; 35(6):524-37. PubMed ID: 26718155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and cellular pathogenesis of autosomal dominant polycystic kidney disease.
    Bastos AP; Onuchic LF
    Braz J Med Biol Res; 2011 Jul; 44(7):606-17. PubMed ID: 21625823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase X (PRKX) can rescue the effects of polycystic kidney disease-1 gene (PKD1) deficiency.
    Li X; Burrow CR; Polgar K; Hyink DP; Gusella GL; Wilson PD
    Biochim Biophys Acta; 2008 Jan; 1782(1):1-9. PubMed ID: 17980165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long noncoding RNA
    Aboudehen K; Farahani S; Kanchwala M; Chan SC; Avdulov S; Mickelson A; Lee D; Gearhart MD; Patel V; Xing C; Igarashi P
    J Biol Chem; 2018 Jun; 293(24):9388-9398. PubMed ID: 29716997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.