These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 21392968)
1. Dehydrogenase activity in association with poised potential during biohydrogen production in single chamber microbial electrolysis cell. Venkata Mohan S; Lenin Babu M Bioresour Technol; 2011 Sep; 102(18):8457-65. PubMed ID: 21392968 [TBL] [Abstract][Full Text] [Related]
2. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells. Lu L; Xing D; Liu B; Ren N Water Res; 2012 Mar; 46(4):1015-26. PubMed ID: 22197264 [TBL] [Abstract][Full Text] [Related]
3. Bio-electrolytic conversion of acidogenic effluents to biohydrogen: an integration strategy for higher substrate conversion and product recovery. Babu ML; Subhash GV; Sarma PN; Mohan SV Bioresour Technol; 2013 Apr; 133():322-31. PubMed ID: 23434809 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Hu H; Fan Y; Liu H Water Res; 2008 Sep; 42(15):4172-8. PubMed ID: 18718624 [TBL] [Abstract][Full Text] [Related]
5. Systematic approach to assess biohydrogen potential of anaerobic sludge and soil rhizobia as biocatalysts: Influence of crucial factors affecting acidogenic fermentation. Nikhil GN; Venkata Mohan S; Swamy YV Bioresour Technol; 2014 Aug; 165():323-31. PubMed ID: 24721687 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell. Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of various cheese whey treatment scenarios in single-chamber microbial electrolysis cells for improved biohydrogen production. Rivera I; Bakonyi P; Cuautle-Marín MA; Buitrón G Chemosphere; 2017 May; 174():253-259. PubMed ID: 28171841 [TBL] [Abstract][Full Text] [Related]
8. Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up. Kitching M; Butler R; Marsili E Enzyme Microb Technol; 2017 Jan; 96():1-13. PubMed ID: 27871368 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen production from switchgrass via an integrated pyrolysis-microbial electrolysis process. Lewis AJ; Ren S; Ye X; Kim P; Labbe N; Borole AP Bioresour Technol; 2015 Nov; 195():231-41. PubMed ID: 26210530 [TBL] [Abstract][Full Text] [Related]
10. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system. Ajayi FF; Kim KY; Chae KJ; Choi MJ; Chang IS; Kim IS Photochem Photobiol Sci; 2010 Mar; 9(3):349-56. PubMed ID: 20221461 [TBL] [Abstract][Full Text] [Related]
11. [Electrochemically active microorganisms and electrolytically assisted fermentative hydrogen production--a review]. Li J; Zhang W; Yin F; Xu R; Chen Y Wei Sheng Wu Xue Bao; 2009 Jun; 49(6):697-702. PubMed ID: 19673403 [TBL] [Abstract][Full Text] [Related]
12. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. Reddy MV; Mohan SV Bioresour Technol; 2012 Jan; 103(1):313-21. PubMed ID: 22055090 [TBL] [Abstract][Full Text] [Related]
13. Bioaugmentation of potent acidogenic isolates: a strategy for enhancing biohydrogen production at elevated organic load. Goud RK; Sarkar O; Chiranjeevi P; Venkata Mohan S Bioresour Technol; 2014 Aug; 165():223-32. PubMed ID: 24751375 [TBL] [Abstract][Full Text] [Related]
14. Impact of volatile fatty acids on microbial electrolysis cell performance. Yang N; Hafez H; Nakhla G Bioresour Technol; 2015 Oct; 193():449-55. PubMed ID: 26159302 [TBL] [Abstract][Full Text] [Related]
15. Design of a microbial fuel cell and its transition to microbial electrolytic cell for hydrogen production by electrohydrogenesis. Gupta P; Parkhey P; Joshi K; Mahilkar A Indian J Exp Biol; 2013 Oct; 51(10):860-5. PubMed ID: 24266111 [TBL] [Abstract][Full Text] [Related]
16. Applied potentials regulate recovery of residual hydrogen from acid-rich effluents: Influence of biocathodic buffer capacity over process performance. Nikhil GN; Venkata Mohan S; Swamy YV Bioresour Technol; 2015; 188():65-72. PubMed ID: 25736904 [TBL] [Abstract][Full Text] [Related]
17. Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC). Thygesen A; Marzorati M; Boon N; Thomsen AB; Verstraete W Appl Microbiol Biotechnol; 2011 Feb; 89(3):855-65. PubMed ID: 21191786 [TBL] [Abstract][Full Text] [Related]
18. Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia. Venkata Mohan S; Vijaya Bhaskar Y; Sarma PN Water Res; 2007 Jun; 41(12):2652-64. PubMed ID: 17418367 [TBL] [Abstract][Full Text] [Related]
19. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions. Luo X; Nam JY; Zhang F; Zhang X; Liang P; Huang X; Logan BE Bioresour Technol; 2013 Jul; 140():399-405. PubMed ID: 23711946 [TBL] [Abstract][Full Text] [Related]
20. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Cheng S; Logan BE Bioresour Technol; 2011 Feb; 102(3):3571-4. PubMed ID: 21036036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]