BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 21393557)

  • 1. Natural language processing improves identification of colorectal cancer testing in the electronic medical record.
    Denny JC; Choma NN; Peterson JF; Miller RA; Bastarache L; Li M; Peterson NB
    Med Decis Making; 2012; 32(1):188-97. PubMed ID: 21393557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting timing and status descriptors for colonoscopy testing from electronic medical records.
    Denny JC; Peterson JF; Choma NN; Xu H; Miller RA; Bastarache L; Peterson NB
    J Am Med Inform Assoc; 2010; 17(4):383-8. PubMed ID: 20595304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a natural language processing system to identify timing and status of colonoscopy testing in electronic medical records.
    Denny JC; Peterson JF; Choma NN; Xu H; Miller RA; Bastarache L; Peterson NB
    AMIA Annu Symp Proc; 2009 Nov; 2009():141. PubMed ID: 20351837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges of Developing a Natural Language Processing Method With Electronic Health Records to Identify Persons With Chronic Mobility Disability.
    Agaronnik ND; Lindvall C; El-Jawahri A; He W; Iezzoni LI
    Arch Phys Med Rehabil; 2020 Oct; 101(10):1739-1746. PubMed ID: 32446905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of pancreatic cancer risk factors from clinical notes using natural language processing.
    Sarwal D; Wang L; Gandhi S; Sagheb Hossein Pour E; Janssens LP; Delgado AM; Doering KA; Mishra AK; Greenwood JD; Liu H; Majumder S
    Pancreatology; 2024 Jun; 24(4):572-578. PubMed ID: 38693040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome.
    Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR
    JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed-methods evaluation of three natural language processing modeling approaches for measuring documented goals-of-care discussions in the electronic health record.
    Uyeda AM; Curtis JR; Engelberg RA; Brumback LC; Guo Y; Sibley J; Lober WB; Cohen T; Torrence J; Heywood J; Paul SR; Kross EK; Lee RY
    J Pain Symptom Manage; 2022 Jun; 63(6):e713-e723. PubMed ID: 35182715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorectal Cancer Screening Rates at Community Health Centers that Use Electronic Health Records: A Cross Sectional Study.
    Baker DW; Liss DT; Alperovitz-Bichell K; Brown T; Carroll JE; Crawford P; Harigopal P; Henley E; Nelson CA; Rittner SS
    J Health Care Poor Underserved; 2015 May; 26(2):377-90. PubMed ID: 25913336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using natural language processing to identify opioid use disorder in electronic health record data.
    Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM
    Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Information Gaps in Electronic Health Records by Using Natural Language Processing: Gynecologic Surgery History Identification.
    Moon S; Carlson LA; Moser ED; Agnikula Kshatriya BS; Smith CY; Rocca WA; Gazzuola Rocca L; Bielinski SJ; Liu H; Larson NB
    J Med Internet Res; 2022 Jan; 24(1):e29015. PubMed ID: 35089141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression.
    Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN
    Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Evaluation of a Natural Language Processing Annotation Tool to Facilitate Phenotyping of Cognitive Status in Electronic Health Records: Diagnostic Study.
    Noori A; Magdamo C; Liu X; Tyagi T; Li Z; Kondepudi A; Alabsi H; Rudmann E; Wilcox D; Brenner L; Robbins GK; Moura L; Zafar S; Benson NM; Hsu J; R Dickson J; Serrano-Pozo A; Hyman BT; Blacker D; Westover MB; Mukerji SS; Das S
    J Med Internet Res; 2022 Aug; 24(8):e40384. PubMed ID: 36040790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The validation of electronic health records in accurately identifying patients eligible for colorectal cancer screening in safety net clinics.
    Petrik AF; Green BB; Vollmer WM; Le T; Bachman B; Keast E; Rivelli J; Coronado GD
    Fam Pract; 2016 Dec; 33(6):639-643. PubMed ID: 27471224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of medical billing data against the electronic health record in the measurement of colorectal cancer screening rates.
    Rudrapatna VA; Glicksberg BS; Avila P; Harding-Theobald E; Wang C; Butte AJ
    BMJ Open Qual; 2020 Mar; 9(1):. PubMed ID: 32209595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural Language Processing to Identify Advance Care Planning Documentation in a Multisite Pragmatic Clinical Trial.
    Lindvall C; Deng CY; Moseley E; Agaronnik N; El-Jawahri A; Paasche-Orlow MK; Lakin JR; Volandes A; Tulsky TAIJA
    J Pain Symptom Manage; 2022 Jan; 63(1):e29-e36. PubMed ID: 34271146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using natural language processing to provide personalized learning opportunities from trainee clinical notes.
    Denny JC; Spickard A; Speltz PJ; Porier R; Rosenstiel DE; Powers JS
    J Biomed Inform; 2015 Aug; 56():292-9. PubMed ID: 26070431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural language processing of clinical notes for identification of critical limb ischemia.
    Afzal N; Mallipeddi VP; Sohn S; Liu H; Chaudhry R; Scott CG; Kullo IJ; Arruda-Olson AM
    Int J Med Inform; 2018 Mar; 111():83-89. PubMed ID: 29425639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using natural language processing to improve efficiency of manual chart abstraction in research: the case of breast cancer recurrence.
    Carrell DS; Halgrim S; Tran DT; Buist DS; Chubak J; Chapman WW; Savova G
    Am J Epidemiol; 2014 Mar; 179(6):749-58. PubMed ID: 24488511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Value of Unstructured Electronic Health Record Data in Geriatric Syndrome Case Identification.
    Kharrazi H; Anzaldi LJ; Hernandez L; Davison A; Boyd CM; Leff B; Kimura J; Weiner JP
    J Am Geriatr Soc; 2018 Aug; 66(8):1499-1507. PubMed ID: 29972595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring Adoption of Patient Priorities-Aligned Care Using Natural Language Processing of Electronic Health Records: Development and Validation of the Model.
    Razjouyan J; Freytag J; Dindo L; Kiefer L; Odom E; Halaszynski J; Silva JW; Naik AD
    JMIR Med Inform; 2021 Feb; 9(2):e18756. PubMed ID: 33605893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.