These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21393719)

  • 61. Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices.
    Ma G; Sun W; Tang SH; Zhang H; Shen Z; Qian S
    Opt Lett; 2002 Jun; 27(12):1043-5. PubMed ID: 18026359
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The formation mechanism of periodic Zn nanocrystal arrays embedded in an amorphous layer by rapid electron beam irradiation.
    Shin JW; Lee JY; No YS; Kim TW; Choi WK; Jin S
    Nanotechnology; 2008 Jul; 19(29):295303. PubMed ID: 21730602
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tight-binding calculations of the optical properties of Si nanocrystals in a SiO
    Nestoklon MO; Avdeev ID; Belolipetskiy AV; Sychugov I; Pevere F; Linnros J; Yassievich IN
    Faraday Discuss; 2020 Jun; 222(0):258-273. PubMed ID: 32100764
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Band-Gap Tunability in Partially Amorphous Silicon Nanoparticles Using Single-Dot Correlative Microscopy.
    Huang CC; Tang Y; van der Laan M; van de Groep J; Koenderink AF; Dohnalová K
    ACS Appl Nano Mater; 2021 Jan; 4(1):288-296. PubMed ID: 33521589
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Two-dimensional electron-hole liquid in single Si quantum wells with large electronic and dielectric confinement.
    Pauc N; Calvo V; Eymery J; Fournel F; Magnea N
    Phys Rev Lett; 2004 Jun; 92(23):236802. PubMed ID: 15245183
    [TBL] [Abstract][Full Text] [Related]  

  • 66. From Si nanowires to porous silicon: the role of excitonic effects.
    Bruno M; Palummo M; Marini A; Del Sole R; Ossicini S
    Phys Rev Lett; 2007 Jan; 98(3):036807. PubMed ID: 17358714
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Communication: generalization of Koopmans' theorem to optical transitions in the Hubbard model of graphene nanodots.
    Sheng W; Luo K; Zhou A
    J Chem Phys; 2015 Jan; 142(2):021102. PubMed ID: 25591331
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Seeing many-body effects in single- and few-layer graphene: observation of two-dimensional saddle-point excitons.
    Mak KF; Shan J; Heinz TF
    Phys Rev Lett; 2011 Jan; 106(4):046401. PubMed ID: 21405342
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structure and energetics of Si nanocrystals embedded in a-SiO2.
    Hadjisavvas G; Kelires PC
    Phys Rev Lett; 2004 Nov; 93(22):226104. PubMed ID: 15601104
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Melting of Pb Nanocrystals Embedded in Al, Si, and Cu Matrices.
    Wang H; Zhu H
    Nanoscale Res Lett; 2015 Dec; 10(1):487. PubMed ID: 26691747
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Coulomb gap triptych in a periodic array of metal nanocrystals.
    Chen T; Skinner B; Shklovskii BI
    Phys Rev Lett; 2012 Sep; 109(12):126805. PubMed ID: 23005975
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tight-binding calculations of SiGe alloy nanocrystals in SiO
    Belolipetsky AV; Nestoklon MO; Yassievich IN
    J Phys Condens Matter; 2019 Sep; 31(38):385301. PubMed ID: 31189146
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Atomistic structure simulation of silicon nanocrystals driven with suboxide penalty energies.
    Yilmaz DE; Bulutay C; Cagin T
    J Nanosci Nanotechnol; 2008 Feb; 8(2):635-9. PubMed ID: 18464383
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improvement of the photon generation efficiency in phosphorus-doped silicon nanocrystals: Γ-X mixing of the confined electron states.
    Belyakov VA; Belov AI; Mikhaylov AN; Tetelbaum DI; Burdov VA
    J Phys Condens Matter; 2009 Jan; 21(4):045803. PubMed ID: 21715825
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Strong Absorption Enhancement in Si Nanorods.
    Sychugov I; Sangghaleh F; Bruhn B; Pevere F; Luo JW; Zunger A; Linnros J
    Nano Lett; 2016 Dec; 16(12):7937-7941. PubMed ID: 27960529
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A robust numerical method for self-polarization energy of spherical quantum dots with finite confinement barriers.
    Deng S
    Comput Phys Commun; 2010 Apr; 181(4):787. PubMed ID: 20161693
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optical response of diamond nanocrystals as a function of particle size, shape, and symmetry.
    Landt L; Klünder K; Dahl JE; Carlson RM; Möller T; Bostedt C
    Phys Rev Lett; 2009 Jul; 103(4):047402. PubMed ID: 19659398
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of quantum confinement on the dielectric function of PbSe.
    Hens Z; Vanmaekelbergh D; Kooij ES; Wormeester H; Allan G; Delerue C
    Phys Rev Lett; 2004 Jan; 92(2):026808. PubMed ID: 14753958
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dynamical excitonic effects in metals and semiconductors.
    Marini A; Del Sole R
    Phys Rev Lett; 2003 Oct; 91(17):176402. PubMed ID: 14611364
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ordinary polarization singularities in three-dimensional optical fields.
    Freund I
    Opt Lett; 2012 Jun; 37(12):2223-5. PubMed ID: 22739862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.