These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 21394297)
1. Suppression of CFTR-mediated Cl secretion of airway epithelium in vitamin C-deficient mice. Kim Y; Kim H; Yoo HY; Kang JS; Kim SJ; Kim JK; Cho HS J Korean Med Sci; 2011 Mar; 26(3):317-24. PubMed ID: 21394297 [TBL] [Abstract][Full Text] [Related]
2. Effects of sevoflurane on the cAMP-induced short-circuit current in mouse tracheal epithelium and recombinant Cl- (CFTR) and K+ (KCNQ1) channels. Kim JK; Yoo HY; Kim SJ; Hwang YS; Han J; Kim JA; Kim CS; Cho HS Br J Anaesth; 2007 Aug; 99(2):245-51. PubMed ID: 17567648 [TBL] [Abstract][Full Text] [Related]
3. Cystic fibrosis transmembrane conductance regulator modulation by the tobacco smoke toxin acrolein. Alexander NS; Blount A; Zhang S; Skinner D; Hicks SB; Chestnut M; Kebbel FA; Sorscher EJ; Woodworth BA Laryngoscope; 2012 Jun; 122(6):1193-7. PubMed ID: 22522920 [TBL] [Abstract][Full Text] [Related]
4. Comparison of vectorial ion transport in primary murine airway and human sinonasal air-liquid interface cultures, models for studies of cystic fibrosis, and other airway diseases. Zhang S; Fortenberry JA; Cohen NA; Sorscher EJ; Woodworth BA Am J Rhinol Allergy; 2009; 23(2):149-52. PubMed ID: 19401039 [TBL] [Abstract][Full Text] [Related]
5. Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl(-) secretion in human airway epithelia. Mall M; Wissner A; Schreiber R; Kuehr J; Seydewitz HH; Brandis M; Greger R; Kunzelmann K Am J Respir Cell Mol Biol; 2000 Sep; 23(3):283-9. PubMed ID: 10970817 [TBL] [Abstract][Full Text] [Related]
6. Pharmacological modulation of ion transport across wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Devor DC; Bridges RJ; Pilewski JM Am J Physiol Cell Physiol; 2000 Aug; 279(2):C461-79. PubMed ID: 10913013 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of amiloride-sensitive Na(+) absorption by activation of CFTR in mouse endometrial epithelium. Chan LN; Wang XF; Tsang LL; So SC; Chung YW; Liu CQ; Chan HC Pflugers Arch; 2001; 443 Suppl 1():S132-6. PubMed ID: 11845319 [TBL] [Abstract][Full Text] [Related]
8. Resveratrol ameliorates abnormalities of fluid and electrolyte secretion in a hypoxia-Induced model of acquired CFTR deficiency. Woodworth BA Laryngoscope; 2015 Oct; 125 Suppl 7(0 7):S1-S13. PubMed ID: 25946147 [TBL] [Abstract][Full Text] [Related]
9. Differential activation of the HCO(3)(-) conductance through the cystic fibrosis transmembrane conductance regulator anion channel by genistein and forskolin in murine duodenum. Tuo B; Wen G; Seidler U Br J Pharmacol; 2009 Nov; 158(5):1313-21. PubMed ID: 19788494 [TBL] [Abstract][Full Text] [Related]
10. Human cystic fibrosis airway epithelia have reduced Cl- conductance but not increased Na+ conductance. Itani OA; Chen JH; Karp PH; Ernst S; Keshavjee S; Parekh K; Klesney-Tait J; Zabner J; Welsh MJ Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10260-5. PubMed ID: 21646513 [TBL] [Abstract][Full Text] [Related]
11. Hesperidin stimulates cystic fibrosis transmembrane conductance regulator-mediated chloride secretion and ciliary beat frequency in sinonasal epithelium. Azbell C; Zhang S; Skinner D; Fortenberry J; Sorscher EJ; Woodworth BA Otolaryngol Head Neck Surg; 2010 Sep; 143(3):397-404. PubMed ID: 20723778 [TBL] [Abstract][Full Text] [Related]
12. Polystyrene nanoparticles activate ion transport in human airway epithelial cells. McCarthy J; Gong X; Nahirney D; Duszyk M; Radomski M Int J Nanomedicine; 2011; 6():1343-56. PubMed ID: 21760729 [TBL] [Abstract][Full Text] [Related]
13. Vitamin C controls the cystic fibrosis transmembrane conductance regulator chloride channel. Fischer H; Schwarzer C; Illek B Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3691-6. PubMed ID: 14993613 [TBL] [Abstract][Full Text] [Related]
14. Quercetin increases cystic fibrosis transmembrane conductance regulator-mediated chloride transport and ciliary beat frequency: therapeutic implications for chronic rhinosinusitis. Zhang S; Smith N; Schuster D; Azbell C; Sorscher EJ; Rowe SM; Woodworth BA Am J Rhinol Allergy; 2011; 25(5):307-12. PubMed ID: 22186243 [TBL] [Abstract][Full Text] [Related]
15. Expression and function of Anoctamin 1/TMEM16A calcium-activated chloride channels in airways of in vivo mouse models for cystic fibrosis research. Hahn A; Salomon JJ; Leitz D; Feigenbutz D; Korsch L; Lisewski I; Schrimpf K; Millar-Büchner P; Mall MA; Frings S; Möhrlen F Pflugers Arch; 2018 Sep; 470(9):1335-1348. PubMed ID: 29860639 [TBL] [Abstract][Full Text] [Related]
16. Luminal acetylcholine does not affect the activity of the CFTR in tracheal epithelia of pigs. Dittrich NP; Kummer W; Clauss WG; Fronius M Int Immunopharmacol; 2015 Nov; 29(1):166-72. PubMed ID: 26286842 [TBL] [Abstract][Full Text] [Related]
17. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium. Hahn A; Faulhaber J; Srisawang L; Stortz A; Salomon JJ; Mall MA; Frings S; Möhrlen F Physiol Rep; 2017 Jun; 5(12):. PubMed ID: 28642338 [TBL] [Abstract][Full Text] [Related]
19. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator-dependent anion and fluid secretion in airway epithelia. Turner MJ; Saint-Criq V; Patel W; Ibrahim SH; Verdon B; Ward C; Garnett JP; Tarran R; Cann MJ; Gray MA J Physiol; 2016 Mar; 594(6):1643-61. PubMed ID: 26574187 [TBL] [Abstract][Full Text] [Related]
20. Effects of purinergic stimulation, CFTR and osmotic stress on amiloride-sensitive Na+ transport in epithelia and Xenopus oocytes. Schreiber R; König J; Sun J; Markovich D; Kunzelmann K J Membr Biol; 2003 Mar; 192(2):101-10. PubMed ID: 12682798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]