These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21394464)

  • 1. Effects of calretinin on Ca2+ signals in cerebellar granule cells: implications of cooperative Ca2+ binding.
    Saftenku EÈ
    Cerebellum; 2012 Mar; 11(1):102-20. PubMed ID: 21394464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin.
    Faas GC; Schwaller B; Vergara JL; Mody I
    PLoS Biol; 2007 Nov; 5(11):e311. PubMed ID: 18044987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models of calcium dynamics in cerebellar granule cells.
    Saftenku EÈ
    Cerebellum; 2012 Mar; 11(1):85-101. PubMed ID: 20922512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous Ca2+ buffer concentration and Ca2+ microdomains in hippocampal neurons.
    Müller A; Kukley M; Stausberg P; Beck H; Müller W; Dietrich D
    J Neurosci; 2005 Jan; 25(3):558-65. PubMed ID: 15659591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin.
    Gall D; Roussel C; Susa I; D'Angelo E; Rossi P; Bearzatto B; Galas MC; Blum D; Schurmans S; Schiffmann SN
    J Neurosci; 2003 Oct; 23(28):9320-7. PubMed ID: 14561859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased calretinin expression in cerebellar granule cells in the leaner mouse.
    Nahm SS; Tomlinson DJ; Abbott LC
    J Neurobiol; 2002 Jun; 51(4):313-22. PubMed ID: 12150506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of capsaicin receptor TRPV1-mediated toxicity in pain-sensing neurons focusing on the effects of Na(+)/Ca(2+) fluxes and the Ca(2+)-binding protein calretinin.
    Pecze L; Blum W; Schwaller B
    Biochim Biophys Acta; 2013 Jul; 1833(7):1680-91. PubMed ID: 22982061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium dynamics, buffering, and buffer saturation in the boutons of dentate granule-cell axons in the hilus.
    Jackson MB; Redman SJ
    J Neurosci; 2003 Mar; 23(5):1612-21. PubMed ID: 12629165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of calcium-binding protein genes induces 160 Hz oscillations in the cerebellar cortex of alert mice.
    Cheron G; Gall D; Servais L; Dan B; Maex R; Schiffmann SN
    J Neurosci; 2004 Jan; 24(2):434-41. PubMed ID: 14724241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calretinin regulates Ca2+-dependent inactivation and facilitation of Ca(v)2.1 Ca2+ channels through a direct interaction with the α12.1 subunit.
    Christel CJ; Schaer R; Wang S; Henzi T; Kreiner L; Grabs D; Schwaller B; Lee A
    J Biol Chem; 2012 Nov; 287(47):39766-75. PubMed ID: 23033479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins.
    Schmidt H; Eilers J
    J Comput Neurosci; 2009 Oct; 27(2):229-43. PubMed ID: 19229604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of calcium binding proteins in the control of cerebellar granule cell neuronal excitability: experimental and modeling studies.
    Gall D; Roussel C; Nieus T; Cheron G; Servais L; D'Angelo E; Schiffmann SN
    Prog Brain Res; 2005; 148():321-8. PubMed ID: 15661200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal patterning of IP3-mediated Ca2+ signals in Xenopus oocytes by Ca2+-binding proteins.
    Dargan SL; Schwaller B; Parker I
    J Physiol; 2004 Apr; 556(Pt 2):447-61. PubMed ID: 14755000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homosynaptic facilitation of transmitter release in crayfish is not affected by mobile calcium chelators: implications for the residual ionized calcium hypothesis from electrophysiological and computational analyses.
    Winslow JL; Duffy SN; Charlton MP
    J Neurophysiol; 1994 Oct; 72(4):1769-93. PubMed ID: 7823101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in parvalbumin regulate presynaptic Ca2+ signaling.
    Collin T; Chat M; Lucas MG; Moreno H; Racay P; Schwaller B; Marty A; Llano I
    J Neurosci; 2005 Jan; 25(1):96-107. PubMed ID: 15634771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous intracellular calcium buffering and the activation/inactivation of HVA calcium currents in rat dentate gyrus granule cells.
    Köhr G; Mody I
    J Gen Physiol; 1991 Nov; 98(5):941-67. PubMed ID: 1662686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calretinin and other CaBPs in the nervous system.
    Rogers J; Khan M; Ellis J
    Adv Exp Med Biol; 1990; 269():195-203. PubMed ID: 2191557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calretinin is present in non-pyramidal cells of the rat hippocampus--II. Co-existence with other calcium binding proteins and GABA.
    Miettinen R; Gulyás AI; Baimbridge KG; Jacobowitz DM; Freund TF
    Neuroscience; 1992; 48(1):29-43. PubMed ID: 1584423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EF-hand protein Ca2+ buffers regulate Ca2+ influx and exocytosis in sensory hair cells.
    Pangršič T; Gabrielaitis M; Michanski S; Schwaller B; Wolf F; Strenzke N; Moser T
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):E1028-37. PubMed ID: 25691754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational study of non-homogeneous distribution of Ca(2+) handling systems in cerebellar granule cells.
    Saftenku EE
    J Theor Biol; 2009 Mar; 257(2):228-44. PubMed ID: 19121636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.