BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21394926)

  • 1. Reactive extraction of levulinate esters and conversion to γ-valerolactone for production of liquid fuels.
    Gürbüz EI; Alonso DM; Bond JQ; Dumesic JA
    ChemSusChem; 2011 Mar; 4(3):357-61. PubMed ID: 21394926
    [No Abstract]   [Full Text] [Related]  

  • 2. Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts.
    Du XL; Bi QY; Liu YM; Cao Y; Fan KN
    ChemSusChem; 2011 Dec; 4(12):1838-43. PubMed ID: 22105964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature.
    Yang Z; Huang YB; Guo QX; Fu Y
    Chem Commun (Camb); 2013 Jun; 49(46):5328-30. PubMed ID: 23648801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts.
    Chia M; Dumesic JA
    Chem Commun (Camb); 2011 Nov; 47(44):12233-5. PubMed ID: 22005944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone.
    Wright WR; Palkovits R
    ChemSusChem; 2012 Sep; 5(9):1657-67. PubMed ID: 22890968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximising opportunities in supercritical chemistry: the continuous conversion of levulinic acid to gamma-valerolactone in CO(2).
    Bourne RA; Stevens JG; Ke J; Poliakoff M
    Chem Commun (Camb); 2007 Nov; (44):4632-4. PubMed ID: 17989815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atom-economical synthesis of γ-valerolactone with self-supplied hydrogen from methanol.
    Li Z; Tang X; Jiang Y; Wang Y; Zuo M; Chen W; Zeng X; Sun Y; Lin L
    Chem Commun (Camb); 2015 Nov; 51(91):16320-3. PubMed ID: 26403664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone.
    Gowda RR; Chen EY
    ChemSusChem; 2016 Jan; 9(2):181-5. PubMed ID: 26735911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.
    Metzker G; Burtoloso AC
    Chem Commun (Camb); 2015 Sep; 51(75):14199-202. PubMed ID: 26258183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol.
    Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L
    ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chemo-enzymatic route to synthesize (S)-γ-valerolactone from levulinic acid.
    Götz K; Liese A; Ansorge-Schumacher M; Hilterhaus L
    Appl Microbiol Biotechnol; 2013 May; 97(9):3865-73. PubMed ID: 23296499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass.
    Pileidis FD; Titirici MM
    ChemSusChem; 2016 Mar; 9(6):562-82. PubMed ID: 26847212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone.
    Michel C; Zaffran J; Ruppert AM; Matras-Michalska J; Jędrzejczyk M; Grams J; Sautet P
    Chem Commun (Camb); 2014 Oct; 50(83):12450-3. PubMed ID: 24980805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrodialytic separation of levulinic acid catalytically synthesized from woody biomass for use in microbial conversion.
    Habe H; Kondo S; Sato Y; Hori T; Kanno M; Kimura N; Koike H; Kirimura K
    Biotechnol Prog; 2017 Mar; 33(2):448-453. PubMed ID: 27997084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators.
    Yun WC; Yang MT; Lin KA
    J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts.
    Deng L; Zhao Y; Li J; Fu Y; Liao B; Guo QX
    ChemSusChem; 2010 Oct; 3(10):1172-5. PubMed ID: 20872402
    [No Abstract]   [Full Text] [Related]  

  • 17. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomass derived efficient conversion of levulinic acid for sustainable production of γ-valerolactone over cobalt based catalyst.
    Barla MK; Velagala RR; Minpoor S; Madduluri VR; Srinivasu P
    J Hazard Mater; 2021 Mar; 405():123335. PubMed ID: 33317894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of the Hydrogen Source on the Selective Production of γ-Valerolactone and 2-Methyltetrahydrofuran from Levulinic Acid.
    Obregón I; Gandarias I; Al-Shaal MG; Mevissen C; Arias PL; Palkovits R
    ChemSusChem; 2016 Sep; 9(17):2488-95. PubMed ID: 27483194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts.
    Lange JP; van de Graaf WD; Haan RJ
    ChemSusChem; 2009; 2(5):437-41. PubMed ID: 19370740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.