BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 21395236)

  • 1. Determination of Young's modulus for nanofibrillated cellulose multilayer thin films using buckling mechanics.
    Cranston ED; Eita M; Johansson E; Netrval J; Salajková M; Arwin H; Wågberg L
    Biomacromolecules; 2011 Apr; 12(4):961-9. PubMed ID: 21395236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addition of silica nanoparticles to tailor the mechanical properties of nanofibrillated cellulose thin films.
    Eita M; Arwin H; Granberg H; Wågberg L
    J Colloid Interface Sci; 2011 Nov; 363(2):566-72. PubMed ID: 21868023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extreme hardening of PDMS thin films due to high compressive strain and confined thickness.
    Xu W; Chahine N; Sulchek T
    Langmuir; 2011 Jul; 27(13):8470-7. PubMed ID: 21634411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.
    Aulin C; Karabulut E; Tran A; Wågberg L; Lindström T
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7352-9. PubMed ID: 23834391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Comparison of Three Buckling-Based Methods to Measure the Elastic Modulus of Nanobiocomposite Thin Films.
    Stimpson TC; Osorio DA; Cranston ED; Moran-Mirabal JM
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):29187-29198. PubMed ID: 34110768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between Young's Modulus and Film Architecture in Cellulose Nanofibril-Based Multilayered Thin Films.
    Azzam F; Chaunier L; Moreau C; Lourdin D; Bertoncini P; Cathala B
    Langmuir; 2017 May; 33(17):4138-4145. PubMed ID: 28407712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromechanical bending of single collagen fibrils using atomic force microscopy.
    Yang L; van der Werf KO; Koopman BF; Subramaniam V; Bennink ML; Dijkstra PJ; Feijen J
    J Biomed Mater Res A; 2007 Jul; 82(1):160-8. PubMed ID: 17269147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the size dependence of Young's modulus using force modulation atomic force microscopy.
    Price WJ; Leigh SA; Hsu SM; Patten TE; Liu GY
    J Phys Chem A; 2006 Feb; 110(4):1382-8. PubMed ID: 16435798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomechanical and structural properties of native cellulose under compressive stress.
    Quesada Cabrera R; Meersman F; McMillan PF; Dmitriev V
    Biomacromolecules; 2011 Jun; 12(6):2178-83. PubMed ID: 21480605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired multiproperty materials: strong, self-healing, and transparent artificial wood nanostructures.
    Merindol R; Diabang S; Felix O; Roland T; Gauthier C; Decher G
    ACS Nano; 2015 Feb; 9(2):1127-36. PubMed ID: 25590696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus.
    Borges AC; Eyholzer C; Duc F; Bourban PE; Tingaut P; Zimmermann T; Pioletti DP; Månson JA
    Acta Biomater; 2011 Sep; 7(9):3412-21. PubMed ID: 21651996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong and tough cellulose nanopaper with high specific surface area and porosity.
    Sehaqui H; Zhou Q; Ikkala O; Berglund LA
    Biomacromolecules; 2011 Oct; 12(10):3638-44. PubMed ID: 21888417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose.
    Cranston ED; Gray DG; Rutland MW
    Langmuir; 2010 Nov; 26(22):17190-7. PubMed ID: 20925376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy.
    Guhados G; Wan W; Hutter JL
    Langmuir; 2005 Jul; 21(14):6642-6. PubMed ID: 15982078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Film thickness limits of a buckling-based method to determine mechanical properties of polymer coatings.
    Niinivaara E; Desmaisons J; Dufresne A; Bras J; Cranston ED
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):227-235. PubMed ID: 32823124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane.
    Cao X; Dong H; Li CM
    Biomacromolecules; 2007 Mar; 8(3):899-904. PubMed ID: 17315923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose.
    Cervin NT; Andersson L; Ng JB; Olin P; Bergström L; Wågberg L
    Biomacromolecules; 2013 Feb; 14(2):503-11. PubMed ID: 23252421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The apparent increase of the Young's modulus in thin cement layers.
    De Jager N; Pallav P; Feilzer AJ
    Dent Mater; 2004 Jun; 20(5):457-62. PubMed ID: 15081552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution.
    Qi H; Cai J; Zhang L; Kuga S
    Biomacromolecules; 2009 Jun; 10(6):1597-602. PubMed ID: 19415903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscopy reveals how relative humidity impacts the Young's modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale.
    Marcuello C; Foulon L; Chabbert B; Aguié-Béghin V; Molinari M
    Int J Biol Macromol; 2020 Mar; 147():1064-1075. PubMed ID: 31743709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.