These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21395282)

  • 1. Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries.
    Du N; Xu Y; Zhang H; Yu J; Zhai C; Yang D
    Inorg Chem; 2011 Apr; 50(8):3320-4. PubMed ID: 21395282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries.
    Shim HW; Lee DK; Cho IS; Hong KS; Kim DW
    Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance.
    Su D; Kim HS; Kim WS; Wang G
    Chemistry; 2012 Jun; 18(26):8224-9. PubMed ID: 22589171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topochemical synthesis of cobalt oxide-based porous nanostructures for high-performance lithium-ion batteries.
    Li CC; Yin XM; Li QH; Chen LB; Wang TH
    Chemistry; 2011 Feb; 17(5):1596-604. PubMed ID: 21268162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries.
    Wang HG; Ma DL; Huang Y; Zhang XB
    Chemistry; 2012 Jul; 18(29):8987-93. PubMed ID: 22689094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.
    Wang L; Gong H; Wang C; Wang D; Tang K; Qian Y
    Nanoscale; 2012 Nov; 4(21):6850-5. PubMed ID: 23034730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries.
    Choi BG; Chang SJ; Lee YB; Bae JS; Kim HJ; Huh YS
    Nanoscale; 2012 Sep; 4(19):5924-30. PubMed ID: 22899185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.
    Wang XL; Han WQ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocavity-enriched Co
    Wang H; Zheng Y; Peng Z; Liu X; Qu C; Huang Z; Cai Z; Fan H; Zhang Y
    Dalton Trans; 2021 Jun; 50(21):7277-7283. PubMed ID: 33954325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co(3)O(4) nanorods for high performance lithium-ion battery electrodes.
    Zhang H; Wu J; Zhai C; Ma X; Du N; Tu J; Yang D
    Nanotechnology; 2008 Jan; 19(3):035711. PubMed ID: 21817596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery.
    Ge X; Li Z; Wang C; Yin L
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26633-42. PubMed ID: 26572922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries.
    Wu MS; Chiang PC; Lee JT; Lin JC
    J Phys Chem B; 2005 Dec; 109(49):23279-84. PubMed ID: 16375294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microemulsion-based synthesis and electrochemical evaluation of different nanostructures of LiCoO2 prepared through sacrificial nanowire templates.
    Yadav GG; David A; Zhu H; Caruthers J; Wu Y
    Nanoscale; 2014 Jan; 6(2):860-6. PubMed ID: 24270237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries.
    Wang HE; Jin J; Cai Y; Xu JM; Chen DS; Zheng XF; Deng Z; Li Y; Bello I; Su BL
    J Colloid Interface Sci; 2014 Mar; 417():144-51. PubMed ID: 24407670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous Silicon Nanotube Arrays as Anode Material for Li-Ion Batteries.
    Tesfaye AT; Gonzalez R; Coffer JL; Djenizian T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20495-8. PubMed ID: 26352212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile fabrication of hierarchical ZnCo2O4/NiO core/shell nanowire arrays with improved lithium-ion battery performance.
    Sun Z; Ai W; Liu J; Qi X; Wang Y; Zhu J; Zhang H; Yu T
    Nanoscale; 2014 Jun; 6(12):6563-8. PubMed ID: 24796419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries.
    Zhan F; Geng B; Guo Y
    Chemistry; 2009 Jun; 15(25):6169-74. PubMed ID: 19437475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New-phased metastable V(2) O(3) porous urchinlike micronanostructures: facile synthesis and application in aqueous lithium ion batteries.
    Xu Y; Zheng L; Wu C; Qi F; Xie Y
    Chemistry; 2011 Jan; 17(1):384-91. PubMed ID: 21207635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microemulsion-mediated sol-gel synthesis of mesoporous rutile TiO2 nanoneedles and its performance as anode material for Li-ion batteries.
    Khomane RB
    J Colloid Interface Sci; 2011 Apr; 356(1):369-72. PubMed ID: 21272892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.