BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21395290)

  • 1. Ab initio QM/MM free-energy studies of arginine deiminase catalysis: the protonation state of the Cys nucleophile.
    Ke Z; Guo H; Xie D; Wang S; Zhang Y
    J Phys Chem B; 2011 Apr; 115(13):3725-33. PubMed ID: 21395290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active site cysteine is protonated in the PAD4 Michaelis complex: evidence from Born-Oppenheimer ab initio QM/MM molecular dynamics simulations.
    Ke Z; Zhou Y; Hu P; Wang S; Xie D; Zhang Y
    J Phys Chem B; 2009 Sep; 113(38):12750-8. PubMed ID: 19507815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical insights into the protonation states of active site cysteine and citrullination mechanism of Porphyromonas gingivalis peptidylarginine deiminase.
    Zhao C; Ling B; Dong L; Liu Y
    Proteins; 2017 Aug; 85(8):1518-1528. PubMed ID: 28486790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Born-Oppenheimer ab initio QM/MM molecular dynamics simulations of the hydrolysis reaction catalyzed by protein arginine deiminase 4.
    Ke Z; Wang S; Xie D; Zhang Y
    J Phys Chem B; 2009 Dec; 113(52):16705-10. PubMed ID: 20028143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations.
    Dieterich JM; Werner HJ; Mata RA; Metz S; Thiel W
    J Chem Phys; 2010 Jan; 132(3):035101. PubMed ID: 20095751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidation of the Catalytic Mechanism of a Miniature Zinc Finger Hydrolase.
    Ganguly A; Luong TQ; Brylski O; Dirkmann M; Möller D; Ebbinghaus S; Schulz F; Winter R; Sanchez-Garcia E; Thiel W
    J Phys Chem B; 2017 Jul; 121(26):6390-6398. PubMed ID: 28648071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QM/MM free-energy simulations of reaction in Serratia marcescens Chitinase B reveal the protonation state of Asp142 and the critical role of Tyr214.
    Jitonnom J; Limb MA; Mulholland AJ
    J Phys Chem B; 2014 May; 118(18):4771-83. PubMed ID: 24730355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of reactivity and selectivity in soluble epoxide hydrolase from quantum mechanics/molecular mechanics modeling.
    Lonsdale R; Hoyle S; Grey DT; Ridder L; Mulholland AJ
    Biochemistry; 2012 Feb; 51(8):1774-86. PubMed ID: 22280021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of the catalytic pathway of a cysteine protease: a combined QM/MM study of human cathepsin K.
    Ma S; Devi-Kesavan LS; Gao J
    J Am Chem Soc; 2007 Nov; 129(44):13633-45. PubMed ID: 17935329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic reaction mechanism of acetylcholinesterase determined by Born-Oppenheimer ab initio QM/MM molecular dynamics simulations.
    Zhou Y; Wang S; Zhang Y
    J Phys Chem B; 2010 Jul; 114(26):8817-25. PubMed ID: 20550161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative studies of the catalytic mechanisms of two chorismatases: CH-fkbo and CH-Hyg5.
    Dong L; Liu Y
    Proteins; 2017 Jun; 85(6):1146-1158. PubMed ID: 28263400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio quantum mechanical/molecular mechanical molecular dynamics simulation of enzyme catalysis: the case of histone lysine methyltransferase SET7/9.
    Wang S; Hu P; Zhang Y
    J Phys Chem B; 2007 Apr; 111(14):3758-64. PubMed ID: 17388541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Catalytic Activity of the Engineered Coiled-Coil Heptamer Mimicking the Hydrolase Enzymes: Insights from a Computational Study.
    Prejanò M; Romeo I; Russo N; Marino T
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction pathway and free energy profile for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide.
    Wei D; Huang X; Liu J; Tang M; Zhan CG
    Biochemistry; 2013 Jul; 52(30):5145-54. PubMed ID: 23862626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the mechanism of protein arginine deiminase 4 (PAD4) inhibition by F-amidine.
    Li D; Liu C; Lin J
    J Mol Graph Model; 2015 Feb; 55():25-32. PubMed ID: 25424656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QM/MM Study of the Catalytic Reaction of Myrosinase; Importance of Assigning Proper Protonation States of Active-Site Residues.
    Jafari S; Ryde U; Irani M
    J Chem Theory Comput; 2021 Mar; 17(3):1822-1841. PubMed ID: 33543623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Catalytic Mechanism of Xanthosine Methyltransferase in Caffeine Biosynthesis from QM/MM Molecular Dynamics and Free Energy Simulations.
    Qian P; Guo HB; Yue Y; Wang L; Yang X; Guo H
    J Chem Inf Model; 2016 Sep; 56(9):1755-61. PubMed ID: 27482605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods.
    Dong G; Ryde U
    J Biol Inorg Chem; 2016 Jun; 21(3):383-94. PubMed ID: 26940957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine deiminase uses an active-site cysteine in nucleophilic catalysis of L-arginine hydrolysis.
    Lu X; Galkin A; Herzberg O; Dunaway-Mariano D
    J Am Chem Soc; 2004 May; 126(17):5374-5. PubMed ID: 15113205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.