These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 21395323)

  • 1. Effect of dextransucrase cellobiose acceptor products on the growth of human gut bacteria.
    Ruiz-Matute AI; Brokl M; Sanz ML; Soria AC; Côté GL; Collins ME; Rastall RA
    J Agric Food Chem; 2011 Apr; 59(8):3693-700. PubMed ID: 21395323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of glycosidic linkages and molecular weight on the fermentation of maltose-based oligosaccharides by human gut bacteria.
    Sanz ML; Côté GL; Gibson GR; Rastall RA
    J Agric Food Chem; 2006 Dec; 54(26):9779-84. PubMed ID: 17177501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prebiotic properties of alternansucrase maltose-acceptor oligosaccharides.
    Sanz ML; Côté GL; Gibson GR; Rastall RA
    J Agric Food Chem; 2005 Jul; 53(15):5911-6. PubMed ID: 16028973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential physiological functions of acceptor products of dextransucrase with cellobiose as an inhibitor of mutansucrase and fungal cell synthase.
    Kim M; Day DF; Kim D
    J Agric Food Chem; 2010 Nov; 58(21):11493-500. PubMed ID: 20929235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gluco-oligosaccharides synthesized by glucosyltransferases from constitutive mutants of Leuconostoc mesenteroides strain Lm 28.
    Iliev I; Vassileva T; Ignatova C; Ivanova I; Haertlé T; Monsan P; Chobert JM
    J Appl Microbiol; 2008 Jan; 104(1):243-50. PubMed ID: 17887982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of oligosaccharide synthesis from cellobiose by dextransucrase.
    Kim M; Day DF
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):189-98. PubMed ID: 18418751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of enzymatically synthesized dextran and oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase.
    Kothari D; Goyal A
    Biochemistry (Mosc); 2013 Oct; 78(10):1164-70. PubMed ID: 24237151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative, quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase.
    Robyt JF; Eklund SH
    Carbohydr Res; 1983 Sep; 121():279-86. PubMed ID: 6230152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel oligosaccharides synthesized from sucrose donor and cellobiose acceptor by alternansucrase.
    Argüello Morales MA; Remaud-Simeon M; Willemot RM; Vignon MR; Monsan P
    Carbohydr Res; 2001 Apr; 331(4):403-11. PubMed ID: 11398982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized substrate concentrations for production of long-chain isomaltooligosaccharides using dextransucrase of Leuconostoc mesenteroides B-512F.
    Lee MS; Cho SK; Eom HJ; Kim SY; Kim TJ; Han NS
    J Microbiol Biotechnol; 2008 Jun; 18(6):1141-5. PubMed ID: 18600060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of a potential prebiotic trisaccharide from cheese whey permeate and sucrose by Leuconostoc mesenteroides dextransucrase.
    Díez-Municio M; Montilla A; Jimeno ML; Corzo N; Olano A; Moreno FJ
    J Agric Food Chem; 2012 Feb; 60(8):1945-53. PubMed ID: 22292607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): a potential prebiotic.
    Chung CH; Day DF
    J Ind Microbiol Biotechnol; 2002 Oct; 29(4):196-9. PubMed ID: 12355319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase.
    Robyt JF; Walseth TF
    Carbohydr Res; 1978 Mar; 61():433-45. PubMed ID: 647705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of truncated and site-directed mutagenesis dextransucrases to produce different type dextrans.
    Wang C; Zhang HB; Li MQ; Hu XQ; Li Y
    Enzyme Microb Technol; 2017 Jul; 102():26-34. PubMed ID: 28465057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum.
    Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B
    Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic synthesis and anti-coagulant effect of salicin analogs by using the Leuconostoc mesenteroides glucansucrase acceptor reaction.
    Seo ES; Lee JH; Park JY; Kim D; Han HJ; Robyt JF
    J Biotechnol; 2005 Apr; 117(1):31-8. PubMed ID: 15831245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of the maltose acceptor-products synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase.
    Dols M; Simeon MR; Willemot RM; Vignon MR; Monsan PF
    Carbohydr Res; 1997 Dec; 305(3-4):549-59. PubMed ID: 9648272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing of a novel dextransucrase efficient in synthesizing oligosaccharides.
    Li QP; Wang C; Zhang HB; Hu XQ; Li RH; Hua JH
    Int J Biol Macromol; 2017 Feb; 95():696-703. PubMed ID: 27919813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic synthesis of non-digestible oligosaccharide catalyzed by dextransucrase and dextranase from maltose acceptor reaction.
    Huang SX; Hou DZ; Qi PX; Wang Q; Chen HL; Ci LY; Chen S
    Biochem Biophys Res Commun; 2020 Mar; 523(3):651-657. PubMed ID: 31948759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synbiotic synthesis of oligosaccharides during milk fermentation by addition of leuconostoc starter and sugars.
    Seo DM; Kim SY; Eom HJ; Han NS
    J Microbiol Biotechnol; 2007 Nov; 17(11):1758-64. PubMed ID: 18092458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.