BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

568 related articles for article (PubMed ID: 21395440)

  • 1. Neural associative memory with optimal Bayesian learning.
    Knoblauch A
    Neural Comput; 2011 Jun; 23(6):1393-451. PubMed ID: 21395440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning only when necessary: better memories of correlated patterns in networks with bounded synapses.
    Senn W; Fusi S
    Neural Comput; 2005 Oct; 17(10):2106-38. PubMed ID: 16105220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binary Willshaw learning yields high synaptic capacity for long-term familiarity memory.
    Sacramento J; Wichert A
    Biol Cybern; 2012 Feb; 106(2):123-33. PubMed ID: 22481645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
    Auer P; Burgsteiner H; Maass W
    Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Associative Computation with Discrete Synapses.
    Knoblauch A
    Neural Comput; 2016 Jan; 28(1):118-86. PubMed ID: 26599711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Memory capacities for synaptic and structural plasticity.
    Knoblauch A; Palm G; Sommer FT
    Neural Comput; 2010 Feb; 22(2):289-341. PubMed ID: 19925281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The restricted influence of sparseness of coding on the capacity of familiarity discrimination networks.
    Bogacz R; Brown MW
    Network; 2002 Nov; 13(4):457-85. PubMed ID: 12463340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian spiking neurons II: learning.
    Deneve S
    Neural Comput; 2008 Jan; 20(1):118-45. PubMed ID: 18045003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell.
    Brunel N; Hakim V; Isope P; Nadal JP; Barbour B
    Neuron; 2004 Sep; 43(5):745-57. PubMed ID: 15339654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing one-shot learning with binary synapses.
    Romani S; Amit DJ; Amit Y
    Neural Comput; 2008 Aug; 20(8):1928-50. PubMed ID: 18386988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tree-like hierarchical associative memory structures.
    Sacramento J; Wichert A
    Neural Netw; 2011 Mar; 24(2):143-7. PubMed ID: 20970304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A learning rule for the emergence of stable dynamics and timing in recurrent networks.
    Buonomano DV
    J Neurophysiol; 2005 Oct; 94(4):2275-83. PubMed ID: 16160088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Memory dynamics in attractor networks with saliency weights.
    Tang H; Li H; Yan R
    Neural Comput; 2010 Jul; 22(7):1899-926. PubMed ID: 20235821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A working memory model based on fast Hebbian learning.
    Sandberg A; Tegnér J; Lansner A
    Network; 2003 Nov; 14(4):789-802. PubMed ID: 14653503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memory capacity of balanced networks.
    Aviel Y; Horn D; Abeles M
    Neural Comput; 2005 Mar; 17(3):691-713. PubMed ID: 15802011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.
    Siri B; Berry H; Cessac B; Delord B; Quoy M
    Neural Comput; 2008 Dec; 20(12):2937-66. PubMed ID: 18624656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network effects of synaptic modifications.
    Liljenström H
    Pharmacopsychiatry; 2010 May; 43 Suppl 1():S67-81. PubMed ID: 20486052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning of oscillatory correlated patterns in a cortical network by a STDP-based learning rule.
    Marinaro M; Scarpetta S; Yoshioka M
    Math Biosci; 2007 Jun; 207(2):322-35. PubMed ID: 17306840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Input-dependent learning rule for the memory of spatiotemporal sequences in hippocampal network with theta phase precession.
    Wu Z; Yamaguchi Y
    Biol Cybern; 2004 Feb; 90(2):113-24. PubMed ID: 14999478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.
    Alemi A; Baldassi C; Brunel N; Zecchina R
    PLoS Comput Biol; 2015 Aug; 11(8):e1004439. PubMed ID: 26291608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.