These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21395465)

  • 21. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering.
    Shi D; Shen J; Zhang Z; Shi C; Chen M; Gu Y; Liu Y
    J Biomed Mater Res A; 2019 Aug; 107(8):1615-1627. PubMed ID: 30920134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of scaffold architecture on cranial bone healing.
    Berner A; Woodruff MA; Lam CX; Arafat MT; Saifzadeh S; Steck R; Ren J; Nerlich M; Ekaputra AK; Gibson I; Hutmacher DW
    Int J Oral Maxillofac Surg; 2014 Apr; 43(4):506-13. PubMed ID: 24183512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies.
    Jiang T; Nukavarapu SP; Deng M; Jabbarzadeh E; Kofron MD; Doty SB; Abdel-Fattah WI; Laurencin CT
    Acta Biomater; 2010 Sep; 6(9):3457-70. PubMed ID: 20307694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poly(3,4-ethylenedioxythiophene) nanoparticle and poly(ɛ-caprolactone) electrospun scaffold characterization for skeletal muscle regeneration.
    McKeon-Fischer KD; Browe DP; Olabisi RM; Freeman JW
    J Biomed Mater Res A; 2015 Nov; 103(11):3633-41. PubMed ID: 25855940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects.
    Yilgor P; Yilmaz G; Onal MB; Solmaz I; Gundogdu S; Keskil S; Sousa RA; Reis RL; Hasirci N; Hasirci V
    J Tissue Eng Regen Med; 2013 Sep; 7(9):687-96. PubMed ID: 22396311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration.
    Lee H; Yeo M; Ahn S; Kang DO; Jang CH; Lee H; Park GM; Kim GH
    J Biomed Mater Res B Appl Biomater; 2011 May; 97(2):263-70. PubMed ID: 21384546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration.
    Amini AR; Adams DJ; Laurencin CT; Nukavarapu SP
    Tissue Eng Part A; 2012 Jul; 18(13-14):1376-88. PubMed ID: 22401817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced regeneration of the ligament-bone interface using a poly(L-lactide-co-ε-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel.
    Lee J; Choi WI; Tae G; Kim YH; Kang SS; Kim SE; Kim SH; Jung Y; Kim SH
    Acta Biomater; 2011 Jan; 7(1):244-57. PubMed ID: 20801240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds.
    Saito E; Liu Y; Migneco F; Hollister SJ
    Acta Biomater; 2012 Jul; 8(7):2568-77. PubMed ID: 22446030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printed Polylactid Acid based porous scaffold for bone tissue engineering: an in vitro study.
    Bodnárová S; Gromošová S; Hudák R; Rosocha J; Živčák J; Plšíková J; Vojtko M; Tóth T; Harvanová D; Ižariková G; Danišovič Ľ
    Acta Bioeng Biomech; 2019; 21(4):101-110. PubMed ID: 32022801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. VEGF-mediated angiogenesis and vascularization of a fumarate-crosslinked polycaprolactone (PCLF) scaffold.
    Wagner ER; Parry J; Dadsetan M; Bravo D; Riester SM; Van Wijnen AJ; Yaszemski MJ; Kakar S
    Connect Tissue Res; 2018 Nov; 59(6):542-549. PubMed ID: 29513041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Particularities of Bone Regeneration in Rats after Implantation of Polycaprolactone Scaffold Mineralized with Vaterite with Adsorbed Tannic Acid.
    Ivanov AN; Saveleva MS; Kurtukova MO; Kustodov SV; Gladkova EV; Blinnikova VV; Babushkina IV; Parakhonskiy BV; Ulyanov VY; Norkin IA
    Bull Exp Biol Med; 2019 Jun; 167(2):275-278. PubMed ID: 31243675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene Terephthalate), Polycaprolactone, and Poly (L\DL) Lactic Acid Plotted Scaffolds for Skeletal Tissue Regeneration.
    Hendrikson WJ; Zeng X; Rouwkema J; van Blitterswijk CA; van der Heide E; Moroni L
    Adv Healthc Mater; 2016 Jan; 5(2):232-43. PubMed ID: 26775915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.