These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21395543)

  • 1. A review of molecular modelling studies of dihydrofolate reductase inhibitors against opportunistic microorganisms and comprehensive evaluation of new models.
    Tawari NR; Bag S; Degani MS
    Curr Pharm Des; 2011; 17(7):712-51. PubMed ID: 21395543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, synthesis, biological evaluation and computational investigation of novel inhibitors of dihydrofolate reductase of opportunistic pathogens.
    Bag S; Tawari NR; Degani MS; Queener SF
    Bioorg Med Chem; 2010 May; 18(9):3187-97. PubMed ID: 20363634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and biological evaluation of biguanide and dihydrotriazine derivatives as potential inhibitors of dihydrofolate reductase of opportunistic microorganisms.
    Bag S; Tawari NR; Queener SF; Degani MS
    J Enzyme Inhib Med Chem; 2010 Jun; 25(3):331-9. PubMed ID: 19874136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis, and antifolate activity of new analogues of piritrexim and other diaminopyrimidine dihydrofolate reductase inhibitors with omega-carboxyalkoxy or omega-carboxy-1-alkynyl substitution in the side chain.
    Chan DC; Fu H; Forsch RA; Queener SF; Rosowsky A
    J Med Chem; 2005 Jun; 48(13):4420-31. PubMed ID: 15974594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and biological evaluation of 2,4-diamino-6-(arylaminomethyl)pyrido[2,3-d]pyrimidines as inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase and as antiopportunistic infection and antitumor agents.
    Gangjee A; Adair OO; Queener SF
    J Med Chem; 2003 Nov; 46(23):5074-82. PubMed ID: 14584957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New 2,4-diamino-5-(2',5'-substituted benzyl)pyrimidines as potential drugs against opportunistic infections of AIDS and other immune disorders. Synthesis and species-dependent antifolate activity.
    Rosowsky A; Forsch RA; Sibley CH; Inderlied CB; Queener SF
    J Med Chem; 2004 Mar; 47(6):1475-86. PubMed ID: 14998335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductases by 2,4-diamino-5-[2-methoxy-5-(omega-carboxyalkyloxy)benzyl]pyrimidines: marked improvement in potency relative to trimethoprim and species selectivity relative to piritrexim.
    Rosowsky A; Forsch RA; Queener SF
    J Med Chem; 2002 Jan; 45(1):233-41. PubMed ID: 11754594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary in vitro studies on two potent, water-soluble trimethoprim analogues with exceptional species selectivity against dihydrofolate reductase from Pneumocystis carinii and Mycobacterium avium.
    Forsch RA; Queener SF; Rosowsky A
    Bioorg Med Chem Lett; 2004 Apr; 14(7):1811-5. PubMed ID: 15026078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of 2,4-diamino-6-[2'-O-(omega-carboxyalkyl)oxydibenz[b,f]azepin-5-yl]methylpteridines as potent and selective inhibitors of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductase.
    Rosowsky A; Fu H; Chan DC; Queener SF
    J Med Chem; 2004 May; 47(10):2475-85. PubMed ID: 15115391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipophilic antifolates as agents against opportunistic infections. 1. Agents superior to trimetrexate and piritrexim against Toxoplasma gondii and Pneumocystis carinii in in vitro evaluations.
    Piper JR; Johnson CA; Krauth CA; Carter RL; Hosmer CA; Queener SF; Borotz SE; Pfefferkorn ER
    J Med Chem; 1996 Mar; 39(6):1271-80. PubMed ID: 8632434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further studies on 2,4-diamino-5-(2',5'-disubstituted benzyl)pyrimidines as potent and selective inhibitors of dihydrofolate reductases from three major opportunistic pathogens of AIDS.
    Rosowsky A; Forsch RA; Queener SF
    J Med Chem; 2003 Apr; 46(9):1726-36. PubMed ID: 12699390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based design of selective inhibitors of dihydrofolate reductase: synthesis and antiparasitic activity of 2, 4-diaminopteridine analogues with a bridged diarylamine side chain.
    Rosowsky A; Cody V; Galitsky N; Fu H; Papoulis AT; Queener SF
    J Med Chem; 1999 Nov; 42(23):4853-60. PubMed ID: 10579848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformationally restricted analogues of trimethoprim: 2,6-diamino-8-substituted purines as potential dihydrofolate reductase inhibitors from Pneumocystis carinii and Toxoplasma gondii.
    Gangjee A; Vasudevan A; Queener SF
    J Med Chem; 1997 Sep; 40(19):3032-9. PubMed ID: 9301665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2,4-diamino-5-deaza-6-substituted pyrido[2,3-d]pyrimidine antifolates as potent and selective nonclassical inhibitors of dihydrofolate reductases.
    Gangjee A; Vasudevan A; Queener SF; Kisliuk RL
    J Med Chem; 1996 Mar; 39(7):1438-46. PubMed ID: 8691474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 6-Substituted 2,4-diaminopyrido[3,2-d]pyrimidine analogues of piritrexim as inhibitors of dihydrofolate reductase from rat liver, Pneumocystis carinii, and Toxoplasma gondii and as antitumor agents.
    Gangjee A; Zhu Y; Queener SF
    J Med Chem; 1998 Nov; 41(23):4533-41. PubMed ID: 9804692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of dihydrofolate reductase inhibition and selectivity using computational neural networks and linear discriminant analysis.
    Mattioni BE; Jurs PC
    J Mol Graph Model; 2003 Mar; 21(5):391-419. PubMed ID: 12543137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel non-classical C9-methyl-5-substituted-2,4-diaminopyrrolo[2,3-d]pyrimidines as potential inhibitors of dihydrofolate reductase and as anti-opportunistic agents.
    Gangjee A; Yang J; Queener SF
    Bioorg Med Chem; 2006 Dec; 14(24):8341-51. PubMed ID: 17010625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and structural analysis for potent antifolate inhibition of Pneumocystis jirovecii, Pneumocystis carinii, and human dihydrofolate reductases and their active-site variants.
    Cody V; Pace J; Queener SF; Adair OO; Gangjee A
    Antimicrob Agents Chemother; 2013 Jun; 57(6):2669-77. PubMed ID: 23545530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of new 2,4-Diaminopyrido[2,3-d]pyrimidine and 2,4-Diaminopyrrolo[2,3-d]pyrimidine inhibitors of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductase.
    Rosowsky A; Chen H; Fu H; Queener SF
    Bioorg Med Chem; 2003 Jan; 11(1):59-67. PubMed ID: 12467708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlations of inhibitor kinetics for Pneumocystis jirovecii and human dihydrofolate reductase with structural data for human active site mutant enzyme complexes.
    Cody V; Pace J; Makin J; Piraino J; Queener SF; Rosowsky A
    Biochemistry; 2009 Mar; 48(8):1702-11. PubMed ID: 19196009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.