These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21396180)

  • 1. Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications.
    Tian Y; Martinez MM; Pappas D
    Appl Spectrosc; 2011 Apr; 65(4):115A-124A. PubMed ID: 21396180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counting single molecules in sub-nanolitre droplets.
    Rane TD; Puleo CM; Liu KJ; Zhang Y; Lee AP; Wang TH
    Lab Chip; 2010 Jan; 10(2):161-4. PubMed ID: 20066242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning fluorescence correlation spectroscopy comes full circle.
    Gunther G; Jameson DM; Aguilar J; Sánchez SA
    Methods; 2018 May; 140-141():52-61. PubMed ID: 29408224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy.
    Bacia K; Schwille P
    Methods; 2003 Jan; 29(1):74-85. PubMed ID: 12543073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology.
    Gullapalli RR; Tabouillot T; Mathura R; Dangaria JH; Butler PJ
    J Biomed Opt; 2007; 12(1):014012. PubMed ID: 17343487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence correlation spectroscopy for the detection and study of single molecules in biology.
    Medina MA; Schwille P
    Bioessays; 2002 Aug; 24(8):758-64. PubMed ID: 12210537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative kinetic analysis in a microfluidic device using frequency-domain fluorescence lifetime imaging.
    Matthews SM; Elder AD; Yunus K; Kaminski CF; Brennan CM; Fisher AC
    Anal Chem; 2007 Jun; 79(11):4101-9. PubMed ID: 17472341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring diffusion in cell membranes by fluorescence correlation spectroscopy.
    Sengupta P; Balaji J; Maiti S
    Methods; 2002 Aug; 27(4):374-87. PubMed ID: 12217654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide.
    Oh YJ; Gamble TC; Leonhardt D; Chung CH; Brueck SR; Ivory CF; Lopez GP; Petsev DN; Han SM
    Lab Chip; 2008 Feb; 8(2):251-8. PubMed ID: 18231663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote temperature measurements in femto-liter volumes using dual-focus-Fluorescence Correlation Spectroscopy.
    Müller CB; Weiss K; Loman A; Enderlein J; Richtering W
    Lab Chip; 2009 May; 9(9):1248-53. PubMed ID: 19370244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alternative framework for fluorescence correlation spectroscopy.
    Jazani S; Sgouralis I; Shafraz OM; Levitus M; Sivasankar S; Pressé S
    Nat Commun; 2019 Aug; 10(1):3662. PubMed ID: 31413259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four-color fluorescence correlation spectroscopy realized in a grating-based detection platform.
    Burkhardt M; Heinze KG; Schwille P
    Opt Lett; 2005 Sep; 30(17):2266-8. PubMed ID: 16190439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of flow direction in microchannels and zebrafish blood vessels by scanning fluorescence correlation spectroscopy.
    Pan X; Yu H; Shi X; Korzh V; Wohland T
    J Biomed Opt; 2007; 12(1):014034. PubMed ID: 17343509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicted spatial resolution of super-resolving fluorescence microscopy using two-color fluorescence dip spectroscopy.
    Iketaki Y; Watanabe T; Ishiuchi S; Sakai M; Omatsu T; Yamamoto K; Fujii M
    Appl Spectrosc; 2003 Oct; 57(10):1312-6. PubMed ID: 14639765
    [No Abstract]   [Full Text] [Related]  

  • 15. Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data.
    Waithe D; Schneider F; Chojnacki J; Clausen MP; Shrestha D; de la Serna JB; Eggeling C
    Methods; 2018 May; 140-141():62-73. PubMed ID: 28963070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High count rates with total internal reflection fluorescence correlation spectroscopy.
    Hassler K; Anhut T; Rigler R; Gösch M; Lasser T
    Biophys J; 2005 Jan; 88(1):L01-3. PubMed ID: 15531630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The LSM 510 META - ConfoCor 2 system: an integrated imaging and spectroscopic platform for single-molecule detection.
    Weisshart K; Jüngel V; Briddon SJ
    Curr Pharm Biotechnol; 2004 Apr; 5(2):135-54. PubMed ID: 15078148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS).
    Ruan Q; Cheng MA; Levi M; Gratton E; Mantulin WW
    Biophys J; 2004 Aug; 87(2):1260-7. PubMed ID: 15298928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence fluctuation spectroscopy in reduced detection volumes.
    Blom H; Kastrup L; Eggeling C
    Curr Pharm Biotechnol; 2006 Feb; 7(1):51-66. PubMed ID: 16472133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of biocondensate microfluidic flow using array-detector FCS.
    Dilissen S; Silva PL; Smolentseva A; Kache T; Thoelen R; Hendrix J
    Biochim Biophys Acta Gen Subj; 2024 Sep; 1868(9):130673. PubMed ID: 39029539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.