BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 21396456)

  • 21. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain network dynamics are hierarchically organized in time.
    Vidaurre D; Smith SM; Woolrich MW
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):12827-12832. PubMed ID: 29087305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. fMRI resting state networks define distinct modes of long-distance interactions in the human brain.
    De Luca M; Beckmann CF; De Stefano N; Matthews PM; Smith SM
    Neuroimage; 2006 Feb; 29(4):1359-67. PubMed ID: 16260155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.
    Fukushima M; Betzel RF; He Y; van den Heuvel MP; Zuo XN; Sporns O
    Brain Struct Funct; 2018 Apr; 223(3):1091-1106. PubMed ID: 29090337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches.
    Kang J; Wang L; Yan C; Wang J; Liang X; He Y
    Neuroimage; 2011 Jun; 56(3):1222-34. PubMed ID: 21420500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resting network is composed of more than one neural pattern: an fMRI study.
    Lee TW; Northoff G; Wu YT
    Neuroscience; 2014 Aug; 274():198-208. PubMed ID: 24881572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topological fractionation of resting-state networks.
    Ding JR; Liao W; Zhang Z; Mantini D; Xu Q; Wu GR; Lu G; Chen H
    PLoS One; 2011; 6(10):e26596. PubMed ID: 22028917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparing Coordinated Networks Across the Brainstem and Spinal Cord in the Resting State and Altered Cognitive State.
    Ioachim G; Powers JM; Stroman PW
    Brain Connect; 2019 Jun; 9(5):415-424. PubMed ID: 30909725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Driving and driven architectures of directed small-world human brain functional networks.
    Yan C; He Y
    PLoS One; 2011; 6(8):e23460. PubMed ID: 21858129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intrinsically organized resting state networks in the human spinal cord.
    Kong Y; Eippert F; Beckmann CF; Andersson J; Finsterbusch J; Büchel C; Tracey I; Brooks JC
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):18067-72. PubMed ID: 25472845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: an independent component analysis.
    Huang H; Wang J; Seger C; Lu M; Deng F; Wu X; He Y; Niu C; Wang J; Huang R
    Brain Struct Funct; 2018 Jan; 223(1):131-144. PubMed ID: 28733834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resting-state networks in awake five- to eight-year old children.
    de Bie HM; Boersma M; Adriaanse S; Veltman DJ; Wink AM; Roosendaal SD; Barkhof F; Stam CJ; Oostrom KJ; Delemarre-van de Waal HA; Sanz-Arigita EJ
    Hum Brain Mapp; 2012 May; 33(5):1189-201. PubMed ID: 21520347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered connectivity patterns among resting state networks in patients with ischemic white matter lesions.
    Ding JR; Ding X; Hua B; Xiong X; Wen Y; Ding Z; Wang Q; Thompson P
    Brain Imaging Behav; 2018 Oct; 12(5):1239-1250. PubMed ID: 29134612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linking functional connectivity and dynamic properties of resting-state networks.
    Lee WH; Frangou S
    Sci Rep; 2017 Nov; 7(1):16610. PubMed ID: 29192157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resting-state networks of the neonate brain identified using independent component analysis.
    Rajasilta O; Tuulari JJ; Björnsdotter M; Scheinin NM; Lehtola SJ; Saunavaara J; Häkkinen S; Merisaari H; Parkkola R; Lähdesmäki T; Karlsson L; Karlsson H
    Dev Neurobiol; 2020 Mar; 80(3-4):111-125. PubMed ID: 32267069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic influences on resting-state functional networks: A twin study.
    Fu Y; Ma Z; Hamilton C; Liang Z; Hou X; Ma X; Hu X; He Q; Deng W; Wang Y; Zhao L; Meng H; Li T; Zhang N
    Hum Brain Mapp; 2015 Oct; 36(10):3959-72. PubMed ID: 26147340
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aberrant functional connectivity of resting state networks associated with trait anxiety.
    Modi S; Kumar M; Kumar P; Khushu S
    Psychiatry Res; 2015 Oct; 234(1):25-34. PubMed ID: 26385540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects.
    Filippi M; Valsasina P; Misci P; Falini A; Comi G; Rocca MA
    Hum Brain Mapp; 2013 Jun; 34(6):1330-43. PubMed ID: 22359372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resting-State Networks of Awake Adolescent and Adult Squirrel Monkeys Using Ultra-High Field (9.4 T) Functional Magnetic Resonance Imaging.
    Yassin W; de Moura FB; Withey SL; Cao L; Kangas BD; Bergman J; Kohut SJ
    eNeuro; 2024 May; 11(5):. PubMed ID: 38627065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variability and reliability of effective connectivity within the core default mode network: A multi-site longitudinal spectral DCM study.
    Almgren H; Van de Steen F; Kühn S; Razi A; Friston K; Marinazzo D
    Neuroimage; 2018 Dec; 183():757-768. PubMed ID: 30165254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.