BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 21396609)

  • 1. The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells.
    Wang B; Cai Q; Zhang S; Yang X; Deng X
    J Mech Behav Biomed Mater; 2011 May; 4(4):600-9. PubMed ID: 21396609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S
    Biomaterials; 2012 Jan; 33(3):846-55. PubMed ID: 22048006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced osteogenic differentiation of mesenchymal stem cells on metal-organic framework based on copper, zinc, and imidazole coated poly-l-lactic acid nanofiber scaffolds.
    Telgerd MD; Sadeghinia M; Birhanu G; Daryasari MP; Zandi-Karimi A; Sadeghinia A; Akbarijavar H; Karami MH; Seyedjafari E
    J Biomed Mater Res A; 2019 Aug; 107(8):1841-1848. PubMed ID: 31033136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold.
    Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun poly(L-lactic acid) nanofibres loaded with dexamethasone to induce osteogenic differentiation of human mesenchymal stem cells.
    Nguyen LT; Liao S; Chan CK; Ramakrishna S
    J Biomater Sci Polym Ed; 2012; 23(14):1771-91. PubMed ID: 21943592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro cell performance on hydroxyapatite particles/poly(L-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation.
    Peng F; Yu X; Wei M
    Acta Biomater; 2011 Jun; 7(6):2585-92. PubMed ID: 21333762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paraffin embedding allows effective analysis of proliferation, survival, and immunophenotyping of cells cultured on poly(l-lactic acid) electrospun nanofiber scaffolds.
    Foroni L; Dirani G; Gualandi C; Focarete ML; Pasquinelli G
    Tissue Eng Part C Methods; 2010 Aug; 16(4):751-60. PubMed ID: 19824801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds.
    Whited BM; Whitney JR; Hofmann MC; Xu Y; Rylander MN
    Biomaterials; 2011 Mar; 32(9):2294-304. PubMed ID: 21195474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds.
    Lee JB; Jeong SI; Bae MS; Heo DN; Heo JS; Hwang YS; Lee HW; Kwon IK
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6371-6. PubMed ID: 22121718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on growth and osteogenic differentiation of human mesenchymal stem cells.
    Schofer MD; Veltum A; Theisen C; Chen F; Agarwal S; Fuchs-Winkelmann S; Paletta JR
    J Mater Sci Mater Med; 2011 Jul; 22(7):1753-62. PubMed ID: 21604139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage.
    Ranjbar-Mohammadi M; Prabhakaran MP; Bahrami SH; Ramakrishna S
    Carbohydr Polym; 2016 Apr; 140():104-12. PubMed ID: 26876833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of silk fibroin nanoparticle-decorated poly(l-lactic acid) composite scaffolds for osteoblast growth and differentiation.
    Chen BQ; Kankala RK; Chen AZ; Yang DZ; Cheng XX; Jiang NN; Zhu K; Wang SB
    Int J Nanomedicine; 2017; 12():1877-1890. PubMed ID: 28331312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers.
    Seyedjafari E; Soleimani M; Ghaemi N; Sarbolouki MN
    J Mater Sci Mater Med; 2011 Jan; 22(1):165-74. PubMed ID: 21069560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats.
    Lin CC; Fu SJ
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():254-63. PubMed ID: 26478309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering.
    Yang F; Murugan R; Wang S; Ramakrishna S
    Biomaterials; 2005 May; 26(15):2603-10. PubMed ID: 15585263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing osteoconduction of PLLA-based nanocomposite scaffolds for bone regeneration using different biomimetic signals to MSCs.
    Ciapetti G; Granchi D; Devescovi V; Baglio SR; Leonardi E; Martini D; Jurado MJ; Olalde B; Armentano I; Kenny JM; Walboomers FX; Alava JI; Baldini N
    Int J Mol Sci; 2012; 13(2):2439-2458. PubMed ID: 22408463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of poly-(L-lactic acid) nanofiber functionalization on maximum load, Young's modulus, and strain of nanofiber scaffolds before and after cultivation of osteoblasts: an in vitro study.
    Paletta J; Erffmeier K; Theisen C; Hussain D; Wendorff JH; Greiner A; Fuchs-Winkelmann S; Schofer MD
    ScientificWorldJournal; 2009 Dec; 9():1382-93. PubMed ID: 20024513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.