These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 21396609)
1. The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells. Wang B; Cai Q; Zhang S; Yang X; Deng X J Mech Behav Biomed Mater; 2011 May; 4(4):600-9. PubMed ID: 21396609 [TBL] [Abstract][Full Text] [Related]
2. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S Biomaterials; 2012 Jan; 33(3):846-55. PubMed ID: 22048006 [TBL] [Abstract][Full Text] [Related]
3. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration. Dong S; Sun J; Li Y; Li J; Cui W; Li B Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():426-33. PubMed ID: 24411397 [TBL] [Abstract][Full Text] [Related]
4. Enhanced osteogenic differentiation of mesenchymal stem cells on metal-organic framework based on copper, zinc, and imidazole coated poly-l-lactic acid nanofiber scaffolds. Telgerd MD; Sadeghinia M; Birhanu G; Daryasari MP; Zandi-Karimi A; Sadeghinia A; Akbarijavar H; Karami MH; Seyedjafari E J Biomed Mater Res A; 2019 Aug; 107(8):1841-1848. PubMed ID: 31033136 [TBL] [Abstract][Full Text] [Related]
5. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133 [TBL] [Abstract][Full Text] [Related]
6. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1443-51. PubMed ID: 24364944 [TBL] [Abstract][Full Text] [Related]
7. Electrospun poly(L-lactic acid) nanofibres loaded with dexamethasone to induce osteogenic differentiation of human mesenchymal stem cells. Nguyen LT; Liao S; Chan CK; Ramakrishna S J Biomater Sci Polym Ed; 2012; 23(14):1771-91. PubMed ID: 21943592 [TBL] [Abstract][Full Text] [Related]
8. In vitro cell performance on hydroxyapatite particles/poly(L-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Peng F; Yu X; Wei M Acta Biomater; 2011 Jun; 7(6):2585-92. PubMed ID: 21333762 [TBL] [Abstract][Full Text] [Related]
9. Electrospun nanostructured scaffolds for bone tissue engineering. Prabhakaran MP; Venugopal J; Ramakrishna S Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211 [TBL] [Abstract][Full Text] [Related]
10. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N; Wang M Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057 [TBL] [Abstract][Full Text] [Related]
11. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519 [TBL] [Abstract][Full Text] [Related]
13. Paraffin embedding allows effective analysis of proliferation, survival, and immunophenotyping of cells cultured on poly(l-lactic acid) electrospun nanofiber scaffolds. Foroni L; Dirani G; Gualandi C; Focarete ML; Pasquinelli G Tissue Eng Part C Methods; 2010 Aug; 16(4):751-60. PubMed ID: 19824801 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber. Lou T; Wang X; Song G Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011 [TBL] [Abstract][Full Text] [Related]
17. Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds. Lee JB; Jeong SI; Bae MS; Heo DN; Heo JS; Hwang YS; Lee HW; Kwon IK J Nanosci Nanotechnol; 2011 Jul; 11(7):6371-6. PubMed ID: 22121718 [TBL] [Abstract][Full Text] [Related]
18. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Ranjbar-Mohammadi M; Prabhakaran MP; Bahrami SH; Ramakrishna S Carbohydr Polym; 2016 Apr; 140():104-12. PubMed ID: 26876833 [TBL] [Abstract][Full Text] [Related]
19. Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on growth and osteogenic differentiation of human mesenchymal stem cells. Schofer MD; Veltum A; Theisen C; Chen F; Agarwal S; Fuchs-Winkelmann S; Paletta JR J Mater Sci Mater Med; 2011 Jul; 22(7):1753-62. PubMed ID: 21604139 [TBL] [Abstract][Full Text] [Related]
20. Co-electrospun gelatin-poly(L-lactic acid) scaffolds: modulation of mechanical properties and chondrocyte response as a function of composition. Torricelli P; Gioffrè M; Fiorani A; Panzavolta S; Gualandi C; Fini M; Focarete ML; Bigi A Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():130-8. PubMed ID: 24433895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]