These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 21396609)
21. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Ren L; Pandit V; Elkin J; Denman T; Cooper JA; Kotha SP Nanoscale; 2013 Mar; 5(6):2337-45. PubMed ID: 23392606 [TBL] [Abstract][Full Text] [Related]
22. Investigation of silk fibroin nanoparticle-decorated poly(l-lactic acid) composite scaffolds for osteoblast growth and differentiation. Chen BQ; Kankala RK; Chen AZ; Yang DZ; Cheng XX; Jiang NN; Zhu K; Wang SB Int J Nanomedicine; 2017; 12():1877-1890. PubMed ID: 28331312 [TBL] [Abstract][Full Text] [Related]
23. Enhancing osteoconduction of PLLA-based nanocomposite scaffolds for bone regeneration using different biomimetic signals to MSCs. Ciapetti G; Granchi D; Devescovi V; Baglio SR; Leonardi E; Martini D; Jurado MJ; Olalde B; Armentano I; Kenny JM; Walboomers FX; Alava JI; Baldini N Int J Mol Sci; 2012; 13(2):2439-2458. PubMed ID: 22408463 [TBL] [Abstract][Full Text] [Related]
24. Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. Seyedjafari E; Soleimani M; Ghaemi N; Sarbolouki MN J Mater Sci Mater Med; 2011 Jan; 22(1):165-74. PubMed ID: 21069560 [TBL] [Abstract][Full Text] [Related]
25. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats. Lin CC; Fu SJ Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():254-63. PubMed ID: 26478309 [TBL] [Abstract][Full Text] [Related]
26. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Yang F; Murugan R; Wang S; Ramakrishna S Biomaterials; 2005 May; 26(15):2603-10. PubMed ID: 15585263 [TBL] [Abstract][Full Text] [Related]
27. Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering. Liu Y; Cui H; Zhuang X; Wei Y; Chen X Acta Biomater; 2014 Dec; 10(12):5074-5080. PubMed ID: 25200841 [TBL] [Abstract][Full Text] [Related]
28. Influence of poly-(L-lactic acid) nanofiber functionalization on maximum load, Young's modulus, and strain of nanofiber scaffolds before and after cultivation of osteoblasts: an in vitro study. Paletta J; Erffmeier K; Theisen C; Hussain D; Wendorff JH; Greiner A; Fuchs-Winkelmann S; Schofer MD ScientificWorldJournal; 2009 Dec; 9():1382-93. PubMed ID: 20024513 [TBL] [Abstract][Full Text] [Related]
29. The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(l-lactide) on the osteogenesis of mesenchymal stem cells. Amjadian S; Seyedjafari E; Zeynali B; Shabani I Int J Pharm; 2016 Jun; 507(1-2):1-11. PubMed ID: 27107902 [TBL] [Abstract][Full Text] [Related]
31. Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on colonization and bone formation in vivo. Schofer MD; Tünnermann L; Kaiser H; Roessler PP; Theisen C; Heverhagen JT; Hering J; Voelker M; Agarwal S; Efe T; Fuchs-Winkelmann S; Paletta JR J Mater Sci Mater Med; 2012 Sep; 23(9):2227-33. PubMed ID: 22718044 [TBL] [Abstract][Full Text] [Related]
32. Surface plasma treatment of poly(caprolactone) micro, nano, and multiscale fibrous scaffolds for enhanced osteoconductivity. Sankar D; Shalumon KT; Chennazhi KP; Menon D; Jayakumar R Tissue Eng Part A; 2014 Jun; 20(11-12):1689-702. PubMed ID: 24377950 [TBL] [Abstract][Full Text] [Related]
33. Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation. Yin Z; Chen X; Song HX; Hu JJ; Tang QM; Zhu T; Shen WL; Chen JL; Liu H; Heng BC; Ouyang HW Biomaterials; 2015 Mar; 44():173-85. PubMed ID: 25617136 [TBL] [Abstract][Full Text] [Related]
34. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Jia L; Prabhakaran MP; Qin X; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4640-50. PubMed ID: 24094171 [TBL] [Abstract][Full Text] [Related]
35. Fabrication of mineralized polymeric nanofibrous composites for bone graft materials. Ngiam M; Liao S; Patil AJ; Cheng Z; Yang F; Gubler MJ; Ramakrishna S; Chan CK Tissue Eng Part A; 2009 Mar; 15(3):535-46. PubMed ID: 18759670 [TBL] [Abstract][Full Text] [Related]
36. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes. Holmes B; Castro NJ; Li J; Keidar M; Zhang LG Nanotechnology; 2013 Sep; 24(36):365102. PubMed ID: 23959974 [TBL] [Abstract][Full Text] [Related]
37. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Badami AS; Kreke MR; Thompson MS; Riffle JS; Goldstein AS Biomaterials; 2006 Feb; 27(4):596-606. PubMed ID: 16023716 [TBL] [Abstract][Full Text] [Related]
38. Poly-L-lactide acid-modified scaffolds for osteoinduction and osteoconduction. Bosetti M; Fusaro L; Nicolì E; Borrone A; Aprile S; Cannas M J Biomed Mater Res A; 2014 Oct; 102(10):3531-9. PubMed ID: 24178410 [TBL] [Abstract][Full Text] [Related]
39. Osteogenesis of human adipose-derived stem cells on hydroxyapatite-mineralized poly(lactic acid) nanofiber sheets. Kung FC; Lin CC; Lai WF Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():578-88. PubMed ID: 25491867 [TBL] [Abstract][Full Text] [Related]