These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21396757)

  • 1. Photochemical processing of aldrin and dieldrin in frozen aqueous solutions under arctic field conditions.
    Rowland GA; Bausch AR; Grannas AM
    Environ Pollut; 2011 May; 159(5):1076-84. PubMed ID: 21396757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition of aldrin, dieldrin, and photodieldrin enantiomers in technical and environmental samples.
    Buser HR; Müller MD; Buerge IJ; Poiger T
    J Agric Food Chem; 2009 Aug; 57(16):7445-52. PubMed ID: 19645510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide.
    Chu L; Anastasio C
    J Phys Chem A; 2005 Jul; 109(28):6264-71. PubMed ID: 16833967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic contaminant amplification during snowmelt.
    Meyer T; Wania F
    Water Res; 2008 Apr; 42(8-9):1847-65. PubMed ID: 18222526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vapor-phase photodecomposition of aldrin and dieldrin.
    Crosby DG; Moilanen KW
    Arch Environ Contam Toxicol; 1974 Mar; 2(1):62-74. PubMed ID: 4828554
    [No Abstract]   [Full Text] [Related]  

  • 6. Photochemical Production of Singlet Oxygen from Dissolved Organic Matter in Ice.
    Fede A; Grannas AM
    Environ Sci Technol; 2015 Nov; 49(21):12808-15. PubMed ID: 26460930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microorganisms in dry polar snow are involved in the exchanges of reactive nitrogen species with the atmosphere.
    Amoroso A; Domine F; Esposito G; Morin S; Savarino J; Nardino M; Montagnoli M; Bonneville JM; Clement JC; Ianniello A; Beine HJ
    Environ Sci Technol; 2010 Jan; 44(2):714-9. PubMed ID: 20000750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoreducible Mercury Loss from Arctic Snow Is Influenced by Temperature and Snow Age.
    Mann EA; Mallory ML; Ziegler SE; Avery TS; Tordon R; O'Driscoll NJ
    Environ Sci Technol; 2015 Oct; 49(20):12120-6. PubMed ID: 26371502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of dissolved organic matter in ice photochemistry.
    Grannas AM; Pagano LP; Pierce BC; Bobby R; Fede A
    Environ Sci Technol; 2014 Sep; 48(18):10725-33. PubMed ID: 25157605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical interactions with snow: understanding the behavior and fate of semi-volatile organic compounds in snow.
    Herbert BM; Villa S; Halsall CJ
    Ecotoxicol Environ Saf; 2006 Jan; 63(1):3-16. PubMed ID: 16038975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoinduced reduction of divalent mercury in ice by organic matter.
    Bartels-Rausch T; Krysztofiak G; Bernhard A; Schläppi M; Schwikowski M; Ammann M
    Chemosphere; 2011 Jan; 82(2):199-203. PubMed ID: 21044797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced aqueous photochemical reaction rates after freezing.
    Grannas AM; Bausch AR; Mahanna KM
    J Phys Chem A; 2007 Nov; 111(43):11043-9. PubMed ID: 17918916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends and sources of perchlorate in Arctic snow.
    Furdui VI; Tomassini F
    Environ Sci Technol; 2010 Jan; 44(2):588-92. PubMed ID: 19968271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in surface area and concentrations of semivolatile organic contaminants in aging snow.
    Burniston DA; Strachan WJ; Hoff JT; Wania F
    Environ Sci Technol; 2007 Jul; 41(14):4932-7. PubMed ID: 17711205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of simulated acid snow stress on leaf tissue of wintering herbaceous plants.
    Inada H; Nagao M; Fujikawa S; Arakawa K
    Plant Cell Physiol; 2006 Apr; 47(4):504-12. PubMed ID: 16481360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of Aldrin and Dieldrin by the White-Rot Fungus Pleurotus ostreatus.
    Purnomo AS; Nawfa R; Martak F; Shimizu K; Kamei I
    Curr Microbiol; 2017 Mar; 74(3):320-324. PubMed ID: 28101603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Pulse of Mercury and Major Ions in Snowmelt Runoff from a Small Arctic Alaska Watershed.
    Douglas TA; Sturm M; Blum JD; Polashenski C; Stuefer S; Hiemstra C; Steffen A; Filhol S; Prevost R
    Environ Sci Technol; 2017 Oct; 51(19):11145-11155. PubMed ID: 28851224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scavenging of gaseous mercury by acidic snow at Kuujjuarapik, Northern Québec.
    Lahoutifard N; Poissant L; Scott SL
    Sci Total Environ; 2006 Feb; 355(1-3):118-26. PubMed ID: 15885746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry of small organic molecules on snow grains: the applicability of artificial snow for environmental studies.
    Kurková R; Ray D; Nachtigallová D; Klán P
    Environ Sci Technol; 2011 Apr; 45(8):3430-6. PubMed ID: 21366308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of aldrin, dieldrin, heptachlor, and heptachlor epoxide using activated carbon and/or Pseudomonas fluorescens free cell cultures.
    Bandala ER; Andres-Octaviano J; Pastrana P; Torres LG
    J Environ Sci Health B; 2006; 41(5):553-69. PubMed ID: 16785166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.