These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 21396818)

  • 1. Octopus vulgaris uses visual information to determine the location of its arm.
    Gutnick T; Byrne RA; Hochner B; Kuba M
    Curr Biol; 2011 Mar; 21(6):460-2. PubMed ID: 21396818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Invertebrate neurobiology: visual direction of arm movements in an octopus.
    Niven JE
    Curr Biol; 2011 Mar; 21(6):R217-8. PubMed ID: 21419985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Peripheral Sensory Information for Central Nervous Control of Arm Movement by Octopus vulgaris.
    Gutnick T; Zullo L; Hochner B; Kuba MJ
    Curr Biol; 2020 Nov; 30(21):4322-4327.e3. PubMed ID: 32916119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing octopus movements using three-dimensional reconstruction.
    Yekutieli Y; Mitelman R; Hochner B; Flash T
    J Neurophysiol; 2007 Sep; 98(3):1775-90. PubMed ID: 17625060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plain-Body Octopus's (
    Kawashima S; Yasumuro H; Ikeda Y
    Zoolog Sci; 2021 Oct; 38(5):383-396. PubMed ID: 34664913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonsomatotopic organization of the higher motor centers in octopus.
    Zullo L; Sumbre G; Agnisola C; Flash T; Hochner B
    Curr Biol; 2009 Oct; 19(19):1632-6. PubMed ID: 19765993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Octopuses use a human-like strategy to control precise point-to-point arm movements.
    Sumbre G; Fiorito G; Flash T; Hochner B
    Curr Biol; 2006 Apr; 16(8):767-72. PubMed ID: 16631583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arm coordination in octopus crawling involves unique motor control strategies.
    Levy G; Flash T; Hochner B
    Curr Biol; 2015 May; 25(9):1195-200. PubMed ID: 25891406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does Octopus vulgaris have preferred arms?
    Byrne RA; Kuba MJ; Meisel DV; Griebel U; Mather JA
    J Comp Psychol; 2006 Aug; 120(3):198-204. PubMed ID: 16893257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Octopus arm movements under constrained conditions: adaptation, modification and plasticity of motor primitives.
    Richter JN; Hochner B; Kuba MJ
    J Exp Biol; 2015 Apr; 218(Pt 7):1069-76. PubMed ID: 25687436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Octopus arm choice is strongly influenced by eye use.
    Byrne RA; Kuba MJ; Meisel DV; Griebel U; Mather JA
    Behav Brain Res; 2006 Sep; 172(2):195-201. PubMed ID: 16797740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-recognition mechanism between skin and suckers prevents octopus arms from interfering with each other.
    Nesher N; Levy G; Grasso FW; Hochner B
    Curr Biol; 2014 Jun; 24(11):1271-5. PubMed ID: 24835454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of octopus arm extension by a peripheral motor program.
    Sumbre G; Gutfreund Y; Fiorito G; Flash T; Hochner B
    Science; 2001 Sep; 293(5536):1845-8. PubMed ID: 11546877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.
    Zelman I; Galun M; Akselrod-Ballin A; Yekutieli Y; Hochner B; Flash T
    J Neurosci Methods; 2009 Aug; 182(1):97-109. PubMed ID: 19505502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements.
    Margheri L; Laschi C; Mazzolai B
    Bioinspir Biomim; 2012 Jun; 7(2):025004. PubMed ID: 22617132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a biomimetic robotic octopus arm.
    Laschi C; Mazzolai B; Mattoli V; Cianchetti M; Dario P
    Bioinspir Biomim; 2009 Mar; 4(1):015006. PubMed ID: 19258690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of octopus arm movements: a model system for studying the control of flexible arms.
    Gutfreund Y; Flash T; Yarom Y; Fiorito G; Segev I; Hochner B
    J Neurosci; 1996 Nov; 16(22):7297-307. PubMed ID: 8929436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Child visuomotor skills: preliminary findings using a new low-cost movement analysis method.
    Chiappedi M; De Bernardi E; Dalla Toffola E; Bejor M
    Funct Neurol; 2010; 25(1):45-8. PubMed ID: 20626996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An octopus-bioinspired solution to movement and manipulation for soft robots.
    Calisti M; Giorelli M; Levy G; Mazzolai B; Hochner B; Laschi C; Dario P
    Bioinspir Biomim; 2011 Sep; 6(3):036002. PubMed ID: 21670493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions.
    Mazzolai B; Margheri L; Cianchetti M; Dario P; Laschi C
    Bioinspir Biomim; 2012 Jun; 7(2):025005. PubMed ID: 22617166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.