BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21396915)

  • 1. Critical role of the nucleolus in activation of the p53-dependent postmitotic checkpoint.
    Tsuchiya M; Katagiri N; Kuroda T; Kishimoto H; Nishimura K; Kumazawa T; Iwasaki N; Kimura K; Yanagisawa J
    Biochem Biophys Res Commun; 2011 Apr; 407(2):378-82. PubMed ID: 21396915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy.
    Vogel C; Kienitz A; Hofmann I; Müller R; Bastians H
    Oncogene; 2004 Sep; 23(41):6845-53. PubMed ID: 15286707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel nucleolar pathway connecting intracellular energy status with p53 activation.
    Kumazawa T; Nishimura K; Kuroda T; Ono W; Yamaguchi C; Katagiri N; Tsuchiya M; Masumoto H; Nakajima Y; Murayama A; Kimura K; Yanagisawa J
    J Biol Chem; 2011 Jun; 286(23):20861-9. PubMed ID: 21471221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleolar protein, Myb-binding protein 1A, specifically binds to nonacetylated p53 and efficiently promotes transcriptional activation.
    Ono W; Akaogi K; Waku T; Kuroda T; Yokoyama W; Hayashi Y; Kimura K; Kishimoto H; Yanagisawa J
    Biochem Biophys Res Commun; 2013 May; 434(3):659-63. PubMed ID: 23583237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nucleolar protein Myb-binding protein 1A (MYBBP1A) enhances p53 tetramerization and acetylation in response to nucleolar disruption.
    Ono W; Hayashi Y; Yokoyama W; Kuroda T; Kishimoto H; Ito I; Kimura K; Akaogi K; Waku T; Yanagisawa J
    J Biol Chem; 2014 Feb; 289(8):4928-40. PubMed ID: 24375404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradual reduction in rRNA transcription triggers p53 acetylation and apoptosis via MYBBP1A.
    Kumazawa T; Nishimura K; Katagiri N; Hashimoto S; Hayashi Y; Kimura K
    Sci Rep; 2015 Jun; 5():10854. PubMed ID: 26044764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MYBBP1a is a novel repressor of NF-kappaB.
    Owen HR; Elser M; Cheung E; Gersbach M; Kraus WL; Hottiger MO
    J Mol Biol; 2007 Feb; 366(3):725-36. PubMed ID: 17196614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA content in the nucleolus alters p53 acetylation via MYBBP1A.
    Kuroda T; Murayama A; Katagiri N; Ohta YM; Fujita E; Masumoto H; Ema M; Takahashi S; Kimura K; Yanagisawa J
    EMBO J; 2011 Mar; 30(6):1054-66. PubMed ID: 21297583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of hyperploid cell formation induced by microtubule inhibiting drug in glioma cell lines.
    Tsuiki H; Nitta M; Tada M; Inagaki M; Ushio Y; Saya H
    Oncogene; 2001 Jan; 20(4):420-9. PubMed ID: 11313973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosomal stress induces processing of Mybbp1a and its translocation from the nucleolus to the nucleoplasm.
    Yamauchi T; Keough RA; Gonda TJ; Ishii S
    Genes Cells; 2008 Jan; 13(1):27-39. PubMed ID: 18173745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IC261, a specific inhibitor of the protein kinases casein kinase 1-delta and -epsilon, triggers the mitotic checkpoint and induces p53-dependent postmitotic effects.
    Behrend L; Milne DM; Stöter M; Deppert W; Campbell LE; Meek DW; Knippschild U
    Oncogene; 2000 Nov; 19(47):5303-13. PubMed ID: 11103931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevention of mammalian DNA reduplication, following the release from the mitotic spindle checkpoint, requires p53 protein, but not p53-mediated transcriptional activity.
    Notterman D; Young S; Wainger B; Levine AJ
    Oncogene; 1998 Nov; 17(21):2743-51. PubMed ID: 9840938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G1 tetraploidy checkpoint and the suppression of tumorigenesis.
    Margolis RL; Lohez OD; Andreassen PR
    J Cell Biochem; 2003 Mar; 88(4):673-83. PubMed ID: 12577301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MYBBP1A suppresses breast cancer tumorigenesis by enhancing the p53 dependent anoikis.
    Akaogi K; Ono W; Hayashi Y; Kishimoto H; Yanagisawa J
    BMC Cancer; 2013 Feb; 13():65. PubMed ID: 23388179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytogenetic damage and the radiation-induced G1-phase checkpoint.
    Gupta N; Vij R; Haas-Kogan DA; Israel MA; Deen DF; Morgan WF
    Radiat Res; 1996 Mar; 145(3):289-98. PubMed ID: 8927696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional interplay between p53 and E2F through co-activator p300.
    Lee CW; Sørensen TS; Shikama N; La Thangue NB
    Oncogene; 1998 May; 16(21):2695-710. PubMed ID: 9652736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation between cell cycle arrest and apoptosis can occur in Li-Fraumeni cells heterozygous for p53 gene mutations.
    Delia D; Goi K; Mizutani S; Yamada T; Aiello A; Fontanella E; Lamorte G; Iwata S; Ishioka C; Krajewski S; Reed JC; Pierotti MA
    Oncogene; 1997 May; 14(18):2137-47. PubMed ID: 9174049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p53-independent abrogation of a postmitotic checkpoint contributes to human papillomavirus E6-induced polyploidy.
    Liu Y; Heilman SA; Illanes D; Sluder G; Chen JJ
    Cancer Res; 2007 Mar; 67(6):2603-10. PubMed ID: 17363579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of G1-like arrest by low concentrations of paclitaxel: next cell cycle p53-dependent arrest with sub G1 DNA content mediated by prolonged mitosis.
    Demidenko ZN; Kalurupalle S; Hanko C; Lim CU; Broude E; Blagosklonny MV
    Oncogene; 2008 Jul; 27(32):4402-10. PubMed ID: 18469851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p53 activation in response to mitotic spindle damage requires signaling via BubR1-mediated phosphorylation.
    Ha GH; Baek KH; Kim HS; Jeong SJ; Kim CM; McKeon F; Lee CW
    Cancer Res; 2007 Aug; 67(15):7155-64. PubMed ID: 17671183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.