BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 21397191)

  • 21. Phosphate release during microtubule assembly: what stabilizes growing microtubules?
    Vandecandelaere A; Brune M; Webb MR; Martin SR; Bayley PM
    Biochemistry; 1999 Jun; 38(25):8179-88. PubMed ID: 10387063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microtubule instability driven by longitudinal and lateral strain propagation.
    Igaev M; Grubmüller H
    PLoS Comput Biol; 2020 Sep; 16(9):e1008132. PubMed ID: 32877399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tubulin rings: which way do they curve?
    Nogales E; Wang HW; Niederstrasser H
    Curr Opin Struct Biol; 2003 Apr; 13(2):256-61. PubMed ID: 12727521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth.
    Chou KC; Zhang CT; Maggiora GM
    Biopolymers; 1994 Jan; 34(1):143-53. PubMed ID: 8110966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The nucleotide switch of tubulin and microtubule assembly: a polymerization-driven structural change.
    Buey RM; Díaz JF; Andreu JM
    Biochemistry; 2006 May; 45(19):5933-8. PubMed ID: 16681364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability.
    Fedorov VA; Orekhov PS; Kholina EG; Zhmurov AA; Ataullakhanov FI; Kovalenko IB; Gudimchuk NB
    PLoS Comput Biol; 2019 Aug; 15(8):e1007327. PubMed ID: 31469822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution structure of GDP-tubulin double rings to 3 nm resolution and comparison with microtubules.
    Díaz JF; Pantos E; Bordas J; Andreu JM
    J Mol Biol; 1994 Apr; 238(2):214-25. PubMed ID: 8158650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The active GTP- and ground GDP-liganded states of tubulin are distinguished by the binding of chiral isomers of ethyl 5-amino-2-methyl-1,2-dihydro-3-phenylpyrido[3,4-b]pyrazin-7-yl carbamate.
    Barbier P; Peyrot V; Leynadier D; Andreu JM
    Biochemistry; 1998 Jan; 37(2):758-68. PubMed ID: 9425100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The free energy profile of tubulin straight-bent conformational changes, with implications for microtubule assembly and drug discovery.
    Peng LX; Hsu MT; Bonomi M; Agard DA; Jacobson MP
    PLoS Comput Biol; 2014 Feb; 10(2):e1003464. PubMed ID: 24516374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro polymerization of microtubules with a fullerene derivative.
    Ratnikova TA; Govindan PN; Salonen E; Ke PC
    ACS Nano; 2011 Aug; 5(8):6306-14. PubMed ID: 21761844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microtubule Simulations Provide Insight into the Molecular Mechanism Underlying Dynamic Instability.
    Tong D; Voth GA
    Biophys J; 2020 Jun; 118(12):2938-2951. PubMed ID: 32413312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microtubule's conformational cap.
    Chrétien D; Jáinosi I; Taveau JC; Flyvbjerg H
    Cell Struct Funct; 1999 Oct; 24(5):299-303. PubMed ID: 15216886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microtubule elongation and guanosine 5'-triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics.
    Carlier MF; Didry D; Pantaloni D
    Biochemistry; 1987 Jul; 26(14):4428-37. PubMed ID: 3663597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microtubule structure at improved resolution.
    Meurer-Grob P; Kasparian J; Wade RH
    Biochemistry; 2001 Jul; 40(27):8000-8. PubMed ID: 11434769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrolysis of GTP associated with the formation of tubulin oligomers is involved in microtubule nucleation.
    Carlier MF; Didry D; Pantaloni D
    Biophys J; 1997 Jul; 73(1):418-27. PubMed ID: 9199805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GDP-tubulin incorporation into growing microtubules modulates polymer stability.
    Valiron O; Arnal I; Caudron N; Job D
    J Biol Chem; 2010 Jun; 285(23):17507-13. PubMed ID: 20371874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy.
    Yajima H; Ogura T; Nitta R; Okada Y; Sato C; Hirokawa N
    J Cell Biol; 2012 Aug; 198(3):315-22. PubMed ID: 22851320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions between Tau and Different Conformations of Tubulin: Implications for Tau Function and Mechanism.
    Duan AR; Jonasson EM; Alberico EO; Li C; Scripture JP; Miller RA; Alber MS; Goodson HV
    J Mol Biol; 2017 May; 429(9):1424-1438. PubMed ID: 28322917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deoxyguanosine nucleotide analogues: potent stimulators of microtubule nucleation with reduced affinity for the exchangeable nucleotide site of tubulin.
    Hamel E; Lustbader J; Lin CM
    Biochemistry; 1984 Oct; 23(22):5314-25. PubMed ID: 6509023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Forces due to curving protofilaments in microtubules.
    Vichare S; Jain I; Inamdar MM; Padinhateeri R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062708. PubMed ID: 24483487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.