BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 21397232)

  • 1. Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.
    Rankin JW; Richter WM; Neptune RR
    J Biomech; 2011 Apr; 44(7):1246-52. PubMed ID: 21397232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of altering push force effectiveness on upper extremity demand during wheelchair propulsion.
    Rankin JW; Kwarciak AM; Mark Richter W; Neptune RR
    J Biomech; 2010 Oct; 43(14):2771-9. PubMed ID: 20674921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: A simulation study.
    Slowik JS; McNitt-Gray JL; Requejo PS; Mulroy SJ; Neptune RR
    Clin Biomech (Bristol, Avon); 2016 Mar; 33():34-41. PubMed ID: 26945719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
    Guo LY; Su FC; Wu HW; An KN
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):106-14. PubMed ID: 12550808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH
    J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion.
    Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):255-62. PubMed ID: 22071430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study.
    Rankin JW; Kwarciak AM; Richter WM; Neptune RR
    Clin Biomech (Bristol, Avon); 2012 Nov; 27(9):879-86. PubMed ID: 22835860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion.
    Morrow MM; Rankin JW; Neptune RR; Kaufman KR
    J Biomech; 2014 Nov; 47(14):3459-65. PubMed ID: 25282075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Load on the shoulder in low intensity wheelchair propulsion.
    Veeger HE; Rozendaal LA; van der Helm FC
    Clin Biomech (Bristol, Avon); 2002 Mar; 17(3):211-8. PubMed ID: 11937259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
    Lin HT; Su FC; Wu HW; An KN
    Proc Inst Mech Eng H; 2004; 218(4):213-21. PubMed ID: 15376723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical analysis of the influence of wheelchair seat position on upper extremity demand.
    Slowik JS; Neptune RR
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):378-85. PubMed ID: 23608478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of wheelchair propulsion hand pattern on upper extremity muscle power and stress.
    Slowik JS; Requejo PS; Mulroy SJ; Neptune RR
    J Biomech; 2016 Jun; 49(9):1554-1561. PubMed ID: 27062591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A preliminary muscle activity analysis: Handle based and push-rim wheelchair propulsion.
    Babu Rajendra Kurup N; Puchinger M; Gfoehler M
    J Biomech; 2019 May; 89():119-122. PubMed ID: 31053474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forward dynamic optimization of handle path and muscle activity for handle based isokinetic wheelchair propulsion: A simulation study.
    Babu Rajendra Kurup N; Puchinger M; Gföhler M
    Comput Methods Biomech Biomed Engin; 2019 Jan; 22(1):55-63. PubMed ID: 30398368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion.
    van der Helm FC; Veeger HE
    J Biomech; 1996 Jan; 29(1):39-52. PubMed ID: 8839016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and evaluation of a model for wheelchair propulsion in an individual with tetraplegia.
    Odle B; Reinbolt J; Forrest G; Dyson-Hudson T
    Med Biol Eng Comput; 2019 Feb; 57(2):519-532. PubMed ID: 30255235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination patterns of shoulder muscles during level-ground and incline wheelchair propulsion.
    Qi L; Wakeling J; Grange S; Ferguson-Pell M
    J Rehabil Res Dev; 2013; 50(5):651-62. PubMed ID: 24013913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical strain and mechanical efficiency in hubcrank and handrim wheelchair propulsion.
    van der Woude LH; van Kranen E; Ariëns G; Rozendal RH; Veeger HE
    J Med Eng Technol; 1995; 19(4):123-31. PubMed ID: 8544207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis.
    Guo LY; Su FC; An KN
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):107-15. PubMed ID: 16226359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimanual wheelchair propulsion by people with severe hemiparesis after stroke.
    Smith BW; Bueno DR; Zondervan DK; Montano L; Reinkensmeyer DJ
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):49-62. PubMed ID: 31248296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.