These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
953 related articles for article (PubMed ID: 21397557)
1. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y; Park JY; Shiroma R; Tokuyasu K J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557 [TBL] [Abstract][Full Text] [Related]
2. A novel lime pretreatment for subsequent bioethanol production from rice straw--calcium capturing by carbonation (CaCCO) process. Park JY; Shiroma R; Al-Haq MI; Zhang Y; Ike M; Arai-Sanoh Y; Ida A; Kondo M; Tokuyasu K Bioresour Technol; 2010 Sep; 101(17):6805-11. PubMed ID: 20382526 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Rudolf A; Baudel H; Zacchi G; Hahn-Hägerdal B; Lidén G Biotechnol Bioeng; 2008 Mar; 99(4):783-90. PubMed ID: 17787015 [TBL] [Abstract][Full Text] [Related]
4. Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose. Kordowska-Wiater M; Targoński Z Acta Microbiol Pol; 2001; 50(3-4):291-9. PubMed ID: 11930997 [TBL] [Abstract][Full Text] [Related]
5. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417 [TBL] [Abstract][Full Text] [Related]
6. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110 [TBL] [Abstract][Full Text] [Related]
7. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
8. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Silva JP; Mussatto SI; Roberto IC Appl Biochem Biotechnol; 2010 Nov; 162(5):1306-15. PubMed ID: 19946760 [TBL] [Abstract][Full Text] [Related]
9. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Yadav KS; Naseeruddin S; Prashanthi GS; Sateesh L; Rao LV Bioresour Technol; 2011 Jun; 102(11):6473-8. PubMed ID: 21470850 [TBL] [Abstract][Full Text] [Related]
10. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. Olofsson K; Rudolf A; Lidén G J Biotechnol; 2008 Mar; 134(1-2):112-20. PubMed ID: 18294716 [TBL] [Abstract][Full Text] [Related]
11. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960 [TBL] [Abstract][Full Text] [Related]
12. Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae. Kordowska-Wiater M; Targoński Z Acta Microbiol Pol; 2002; 51(4):345-52. PubMed ID: 12708823 [TBL] [Abstract][Full Text] [Related]
13. Improved ethanol and reduced xylitol production from glucose and xylose mixtures by the mutant strain of Candida shehatae ATCC 22984. Li Y; Park JY; Shiroma R; Ike M; Tokuyasu K Appl Biochem Biotechnol; 2012 Apr; 166(7):1781-90. PubMed ID: 22328261 [TBL] [Abstract][Full Text] [Related]
14. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361 [TBL] [Abstract][Full Text] [Related]
15. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts. Kumari R; Pramanik K Appl Biochem Biotechnol; 2012 Jun; 167(4):873-84. PubMed ID: 22639357 [TBL] [Abstract][Full Text] [Related]
16. Heterologous expression of transaldolase gene Tal from Saccharomyces cerevisiae in Fusarium oxysporum for enhanced bioethanol production. Fan JX; Yang XX; Song JZ; Huang XM; Cheng ZX; Yao L; Juba OS; Liang Q; Yang Q; Odeph M; Sun Y; Wang Y Appl Biochem Biotechnol; 2011 Aug; 164(7):1023-36. PubMed ID: 21394668 [TBL] [Abstract][Full Text] [Related]
17. Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by Same Vessel Saccharification and Co-Fermentation. Karagöz P; Rocha IV; Özkan M; Angelidaki I Bioresour Technol; 2012 Jan; 104():349-57. PubMed ID: 22104093 [TBL] [Abstract][Full Text] [Related]
18. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Huang CF; Lin TH; Guo GL; Hwang WS Bioresour Technol; 2009 Sep; 100(17):3914-20. PubMed ID: 19349164 [TBL] [Abstract][Full Text] [Related]
19. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
20. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]