These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 21397615)
1. Processing of low spatial frequency faces at periphery in choice reaching tasks. Awasthi B; Friedman J; Williams MA Neuropsychologia; 2011 Jun; 49(7):2136-41. PubMed ID: 21397615 [TBL] [Abstract][Full Text] [Related]
2. Faster, stronger, lateralized: low spatial frequency information supports face processing. Awasthi B; Friedman J; Williams MA Neuropsychologia; 2011 Nov; 49(13):3583-90. PubMed ID: 21939676 [TBL] [Abstract][Full Text] [Related]
3. Increased fusiform area activation in schizophrenia during processing of spatial frequency-degraded faces, as revealed by fMRI. Silverstein SM; All SD; Kasi R; Berten S; Essex B; Lathrop KL; Little DM Psychol Med; 2010 Jul; 40(7):1159-69. PubMed ID: 19895721 [TBL] [Abstract][Full Text] [Related]
4. Effects of spatial frequency and location of fearful faces on human amygdala activity. Morawetz C; Baudewig J; Treue S; Dechent P Brain Res; 2011 Jan; 1371():87-99. PubMed ID: 21059346 [TBL] [Abstract][Full Text] [Related]
5. Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study. Peyrin C; Baciu M; Segebarth C; Marendaz C Neuroimage; 2004 Oct; 23(2):698-707. PubMed ID: 15488419 [TBL] [Abstract][Full Text] [Related]
6. The effects of face spatial frequencies on cortical processing revealed by magnetoencephalography. Hsiao FJ; Hsieh JC; Lin YY; Chang Y Neurosci Lett; 2005 May 20-27; 380(1-2):54-9. PubMed ID: 15854750 [TBL] [Abstract][Full Text] [Related]
8. Residual abilities in age-related macular degeneration to process spatial frequencies during natural scene categorization. Musel B; Hera R; Chokron S; Alleysson D; Chiquet C; Romanet JP; Guyader N; Peyrin C Vis Neurosci; 2011 Nov; 28(6):529-41. PubMed ID: 22192508 [TBL] [Abstract][Full Text] [Related]
9. Reach trajectories reveal delayed processing of low spatial frequency faces in developmental prosopagnosia. Awasthi B; Friedman J; Williams MA Cogn Neurosci; 2012; 3(2):120-30. PubMed ID: 24168693 [TBL] [Abstract][Full Text] [Related]
10. 1/f(p) Characteristics of the Fourier power spectrum affects ERP correlates of face learning and recognition. Blickhan M; Kaufmann JM; Denzler J; Schweinberger SR; Redies C Biol Psychol; 2011 Dec; 88(2-3):204-14. PubMed ID: 21856372 [TBL] [Abstract][Full Text] [Related]
11. Patients with schizophrenia are biased toward low spatial frequency to decode facial expression at a glance. Laprévote V; Oliva A; Delerue C; Thomas P; Boucart M Neuropsychologia; 2010 Dec; 48(14):4164-8. PubMed ID: 20955721 [TBL] [Abstract][Full Text] [Related]
12. Revisiting the role of spatial frequencies in the holistic processing of faces. Cheung OS; Richler JJ; Palmeri TJ; Gauthier I J Exp Psychol Hum Percept Perform; 2008 Dec; 34(6):1327-36. PubMed ID: 19045978 [TBL] [Abstract][Full Text] [Related]
13. The role of spatial frequency information for ERP components sensitive to faces and emotional facial expression. Holmes A; Winston JS; Eimer M Brain Res Cogn Brain Res; 2005 Oct; 25(2):508-20. PubMed ID: 16168629 [TBL] [Abstract][Full Text] [Related]
14. Low spatial frequency filtering modulates early brain processing of affective complex pictures. Alorda C; Serrano-Pedraza I; Campos-Bueno JJ; Sierra-Vázquez V; Montoya P Neuropsychologia; 2007 Nov; 45(14):3223-33. PubMed ID: 17681356 [TBL] [Abstract][Full Text] [Related]
15. The horizontal tuning of face perception relies on the processing of intermediate and high spatial frequencies. Goffaux V; van Zon J; Schiltz C J Vis; 2011 Sep; 11(10):. PubMed ID: 21900371 [TBL] [Abstract][Full Text] [Related]
16. Decreased spatial frequency sensitivities for processing faces in male patients with chronic schizophrenia. Obayashi C; Nakashima T; Onitsuka T; Maekawa T; Hirano Y; Hirano S; Oribe N; Kaneko K; Kanba S; Tobimatsu S Clin Neurophysiol; 2009 Aug; 120(8):1525-33. PubMed ID: 19632149 [TBL] [Abstract][Full Text] [Related]
17. Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces. Liu L; Ioannides AA Neuroimage; 2006 Jul; 31(4):1726-40. PubMed ID: 16564185 [TBL] [Abstract][Full Text] [Related]
18. Using spatial frequency scales for processing face features and face configuration: an ERP analysis. Flevaris AV; Robertson LC; Bentin S Brain Res; 2008 Feb; 1194():100-9. PubMed ID: 18190897 [TBL] [Abstract][Full Text] [Related]
19. The respective role of low and high spatial frequencies in supporting configural and featural processing of faces. Goffaux V; Hault B; Michel C; Vuong QC; Rossion B Perception; 2005; 34(1):77-86. PubMed ID: 15773608 [TBL] [Abstract][Full Text] [Related]
20. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder. Vlamings PH; Jonkman LM; van Daalen E; van der Gaag RJ; Kemner C Biol Psychiatry; 2010 Dec; 68(12):1107-13. PubMed ID: 20728876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]