These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 21397652)
1. Neuronal Glud1 (glutamate dehydrogenase 1) over-expressing mice: increased glutamate formation and synaptic release, loss of synaptic activity, and adaptive changes in genomic expression. Michaelis EK; Wang X; Pal R; Bao X; Hascup KN; Wang Y; Wang WT; Hui D; Agbas A; Choi IY; Belousov A; Gerhardt GA Neurochem Int; 2011 Sep; 59(4):473-81. PubMed ID: 21397652 [TBL] [Abstract][Full Text] [Related]
2. Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. Bao X; Pal R; Hascup KN; Wang Y; Wang WT; Xu W; Hui D; Agbas A; Wang X; Michaelis ML; Choi IY; Belousov AB; Gerhardt GA; Michaelis EK J Neurosci; 2009 Nov; 29(44):13929-44. PubMed ID: 19890003 [TBL] [Abstract][Full Text] [Related]
3. Gene expression patterns in the hippocampus during the development and aging of Glud1 (Glutamate Dehydrogenase 1) transgenic and wild type mice. Wang X; Patel ND; Hui D; Pal R; Hafez MM; Sayed-Ahmed MM; Al-Yahya AA; Michaelis EK BMC Neurosci; 2014 Mar; 15():37. PubMed ID: 24593767 [TBL] [Abstract][Full Text] [Related]
4. Increases in anterograde axoplasmic transport in neurons of the hyper-glutamatergic, glutamate dehydrogenase 1 (Glud1) transgenic mouse: Effects of glutamate receptors on transport. Lee P; Kim J; Choi IY; Pal R; Hui D; Marcario JK; Michaelis ML; Michaelis EK J Neurochem; 2024 May; 168(5):719-727. PubMed ID: 38124277 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate. Wang X; Bao X; Pal R; Agbas A; Michaelis EK BMC Genomics; 2010 Jun; 11():360. PubMed ID: 20529287 [TBL] [Abstract][Full Text] [Related]
6. Differential levels of glutamate dehydrogenase 1 (GLUD1) in Balb/c and C57BL/6 mice and the effects of overexpression of the Glud1 gene on glutamate release in striatum. Hascup KN; Bao X; Hascup ER; Hui D; Xu W; Pomerleau F; Huettl P; Michaelis ML; Michaelis EK; Gerhardt GA ASN Neuro; 2011 Apr; 3(2):. PubMed ID: 21446915 [TBL] [Abstract][Full Text] [Related]
7. Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission. Frigerio F; Karaca M; De Roo M; Mlynárik V; Skytt DM; Carobbio S; Pajęcka K; Waagepetersen HS; Gruetter R; Muller D; Maechler P J Neurochem; 2012 Nov; 123(3):342-8. PubMed ID: 22924626 [TBL] [Abstract][Full Text] [Related]
8. Metabolism changes during aging in the hippocampus and striatum of glud1 (glutamate dehydrogenase 1) transgenic mice. Choi IY; Lee P; Wang WT; Hui D; Wang X; Brooks WM; Michaelis EK Neurochem Res; 2014; 39(3):446-55. PubMed ID: 24442550 [TBL] [Abstract][Full Text] [Related]
9. Transgenic Mice Carrying GLUD2 as a Tool for Studying the Expressional and the Functional Adaptation of this Positive Selected Gene in Human Brain Evolution. Plaitakis A; Kotzamani D; Petraki Z; Delidaki M; Rinotas V; Zaganas I; Douni E; Sidiropoulou K; Spanaki C Neurochem Res; 2019 Jan; 44(1):154-169. PubMed ID: 29777493 [TBL] [Abstract][Full Text] [Related]
10. Altered presymptomatic AMPA and cannabinoid receptor trafficking in motor neurons of ALS model mice: implications for excitotoxicity. Zhao P; Ignacio S; Beattie EC; Abood ME Eur J Neurosci; 2008 Feb; 27(3):572-9. PubMed ID: 18279310 [TBL] [Abstract][Full Text] [Related]
11. Altered balance of glutamatergic/GABAergic synaptic input and associated changes in dendrite morphology after BDNF expression in BDNF-deficient hippocampal neurons. Singh B; Henneberger C; Betances D; Arevalo MA; Rodríguez-Tébar A; Meier JC; Grantyn R J Neurosci; 2006 Jul; 26(27):7189-200. PubMed ID: 16822976 [TBL] [Abstract][Full Text] [Related]
12. Effects of Ethanol Exposure on the Neurochemical Profile of a Transgenic Mouse Model with Enhanced Glutamate Release Using In Vivo Wang WT; Lee P; Hui D; Michaelis EK; Choi IY Neurochem Res; 2019 Jan; 44(1):133-146. PubMed ID: 30334175 [TBL] [Abstract][Full Text] [Related]
14. Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. Nakamoto C; Konno K; Miyazaki T; Nakatsukasa E; Natsume R; Abe M; Kawamura M; Fukazawa Y; Shigemoto R; Yamasaki M; Sakimura K; Watanabe M J Comp Neurol; 2020 Apr; 528(6):1003-1027. PubMed ID: 31625608 [TBL] [Abstract][Full Text] [Related]
15. Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons. Waagepetersen HS; Qu H; Sonnewald U; Shimamoto K; Schousboe A Neurochem Int; 2005 Jul; 47(1-2):92-102. PubMed ID: 15921825 [TBL] [Abstract][Full Text] [Related]
16. Combination of group I mGlu receptors antagonist with dopaminergic agonists strengthens the synaptic transmission at corticostriatal synapses in culture. Burguière A; De Bundel D; Valjent E; Roger J; Smolders I; Fagni L; Perroy J Neuropharmacology; 2013 Mar; 66():151-7. PubMed ID: 22465815 [TBL] [Abstract][Full Text] [Related]
17. Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release. Sigler A; Oh WC; Imig C; Altas B; Kawabe H; Cooper BH; Kwon HB; Rhee JS; Brose N Neuron; 2017 Apr; 94(2):304-311.e4. PubMed ID: 28426965 [TBL] [Abstract][Full Text] [Related]
18. Assembly of Excitatory Synapses in the Absence of Glutamatergic Neurotransmission. Sando R; Bushong E; Zhu Y; Huang M; Considine C; Phan S; Ju S; Uytiepo M; Ellisman M; Maximov A Neuron; 2017 Apr; 94(2):312-321.e3. PubMed ID: 28426966 [TBL] [Abstract][Full Text] [Related]
19. Targeting VGLUT2 in Mature Dopamine Neurons Decreases Mesoaccumbal Glutamatergic Transmission and Identifies a Role for Glutamate Co-release in Synaptic Plasticity by Increasing Baseline AMPA/NMDA Ratio. Papathanou M; Creed M; Dorst MC; Bimpisidis Z; Dumas S; Pettersson H; Bellone C; Silberberg G; Lüscher C; Wallén-Mackenzie Å Front Neural Circuits; 2018; 12():64. PubMed ID: 30210305 [TBL] [Abstract][Full Text] [Related]