These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 21398116)

  • 1. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA).
    Damartzis T; Vamvuka D; Sfakiotakis S; Zabaniotou A
    Bioresour Technol; 2011 May; 102(10):6230-8. PubMed ID: 21398116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer.
    Wu K; Liu J; Wu Y; Chen Y; Li Q; Xiao X; Yang M
    Bioresour Technol; 2014 Jul; 163():18-25. PubMed ID: 24768943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis.
    Sadhukhan AK; Gupta P; Goyal T; Saha RK
    Bioresour Technol; 2008 Nov; 99(17):8022-6. PubMed ID: 18485697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis.
    Ceylan S; Topçu Y
    Bioresour Technol; 2014 Mar; 156():182-8. PubMed ID: 24508656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer.
    Shuping Z; Yulong W; Mingde Y; Chun L; Junmao T
    Bioresour Technol; 2010 Jan; 101(1):359-65. PubMed ID: 19720523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor.
    Park YH; Kim J; Kim SS; Park YK
    Bioresour Technol; 2009 Jan; 100(1):400-5. PubMed ID: 18693012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
    Mishra RK; Mohanty K
    Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria.
    Hu M; Chen Z; Guo D; Liu C; Xiao B; Hu Z; Liu S
    Bioresour Technol; 2015 Feb; 177():41-50. PubMed ID: 25479392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The comparative kinetic analysis of Acetocell and Lignoboost® lignin pyrolysis: the estimation of the distributed reactivity models.
    Janković B
    Bioresour Technol; 2011 Oct; 102(20):9763-71. PubMed ID: 21852115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae.
    Gai C; Zhang Y; Chen WT; Zhang P; Dong Y
    Bioresour Technol; 2013 Dec; 150():139-48. PubMed ID: 24161552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Logistic distributed activation energy model--part 2: application to cellulose pyrolysis.
    Cai J; Yang S; Li T
    Bioresour Technol; 2011 Feb; 102(3):3642-4. PubMed ID: 21134741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis treatment of oil sludge and model-free kinetics analysis.
    Liu J; Jiang X; Zhou L; Han X; Cui Z
    J Hazard Mater; 2009 Jan; 161(2-3):1208-15. PubMed ID: 18514401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst.
    Loy ACM; Gan DKW; Yusup S; Chin BLF; Lam MK; Shahbaz M; Unrean P; Acda MN; Rianawati E
    Bioresour Technol; 2018 Aug; 261():213-222. PubMed ID: 29665455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulping cardoon (Cynara cardunculus) with peroxyformic acid (MILOX) in one single stage.
    Ligero P; Villaverde JJ; Vega A; Bao M
    Bioresour Technol; 2008 Sep; 99(13):5687-93. PubMed ID: 18039568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential.
    Mishra RK; Mohanty K
    Bioresour Technol; 2020 Sep; 311():123480. PubMed ID: 32413639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis.
    Ounas A; Aboulkas A; El Harfi K; Bacaoui A; Yaacoubi A
    Bioresour Technol; 2011 Dec; 102(24):11234-8. PubMed ID: 22004591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses.
    Singh RK; Pandey D; Patil T; Sawarkar AN
    Bioresour Technol; 2020 Aug; 310():123464. PubMed ID: 32388356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis.
    Wongsiriamnuay T; Tippayawong N
    Bioresour Technol; 2010 Jul; 101(14):5638-44. PubMed ID: 20189804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermogravimetric characteristics and pyrolysis kinetics of alga Sagarssum sp. biomass.
    Kim SS; Ly HV; Kim J; Choi JH; Woo HC
    Bioresour Technol; 2013 Jul; 139():242-8. PubMed ID: 23665684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.