These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21398289)

  • 21. Photooxidation mediated by 11-
    Chen C; Kono M; Koutalos Y
    Photochem Photobiol Sci; 2020 Oct; 19(10):1300-1307. PubMed ID: 32812970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhodopsin chromophore exchanges among opsin molecules in the dark.
    Defoe DM; Bok D
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1211-26. PubMed ID: 6224755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of arrestin and retinoids in the regeneration pathway of rhodopsin.
    Hofmann KP; Pulvermüller A; Buczyłko J; Van Hooser P; Palczewski K
    J Biol Chem; 1992 Aug; 267(22):15701-6. PubMed ID: 1386362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhodopsin, 11-cis vitamin A, and interstitial retinol-binding protein (IRBP) during retinal development in normal and rd mutant mice.
    Carter-Dawson L; Alvarez RA; Fong SL; Liou GI; Sperling HG; Bridges CD
    Dev Biol; 1986 Aug; 116(2):431-8. PubMed ID: 3732615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arrestin competition influences the kinetics and variability of the single-photon responses of mammalian rod photoreceptors.
    Doan T; Azevedo AW; Hurley JB; Rieke F
    J Neurosci; 2009 Sep; 29(38):11867-79. PubMed ID: 19776273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinol dehydrogenase 8 and ATP-binding cassette transporter 4 modulate dark adaptation of M-cones in mammalian retina.
    Kolesnikov AV; Maeda A; Tang PH; Imanishi Y; Palczewski K; Kefalov VJ
    J Physiol; 2015 Nov; 593(22):4923-41. PubMed ID: 26350353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin.
    Krupnick JG; Gurevich VV; Benovic JL
    J Biol Chem; 1997 Jul; 272(29):18125-31. PubMed ID: 9218446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of rhodopsin dephosphorylation by arrestin.
    Palczewski K; McDowell JH; Jakes S; Ingebritsen TS; Hargrave PA
    J Biol Chem; 1989 Sep; 264(27):15770-3. PubMed ID: 2550422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of alpha tocopherol, all-trans retinol and retinyl palmitate on the non enzymatic lipid peroxidation of rod outer segments.
    Guajardo M; Terrasa A; Catalá A
    Mol Cell Biochem; 1999 Jul; 197(1-2):173-8. PubMed ID: 10485336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of photoreceptor-specific retinol dehydrogenase in the retinoid cycle in vivo.
    Maeda A; Maeda T; Imanishi Y; Kuksa V; Alekseev A; Bronson JD; Zhang H; Zhu L; Sun W; Saperstein DA; Rieke F; Baehr W; Palczewski K
    J Biol Chem; 2005 May; 280(19):18822-32. PubMed ID: 15755727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interphotoreceptor retinoid-binding protein (IRBP) promotes the release of all-trans retinol from the isolated retina following rhodopsin bleaching illumination.
    Qtaishat NM; Wiggert B; Pepperberg DR
    Exp Eye Res; 2005 Oct; 81(4):455-63. PubMed ID: 15935345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of rhodopsin's chromophore monitored in a single photoreceptor.
    Adler L; Boyer NP; Chen C; Koutalos Y
    Methods Mol Biol; 2015; 1271():327-43. PubMed ID: 25697533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Axial diffusion of retinol in isolated frog rod outer segments following substantial bleaches of visual pigment.
    Sears RC; Kaplan MW
    Vision Res; 1989; 29(11):1485-92. PubMed ID: 2635474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterologous expression and reconstitution of rhodopsin with rhodopsin kinase and arrestin.
    Osawa S; Raman D; Weiss ER
    Methods Enzymol; 2000; 315():411-22. PubMed ID: 10736717
    [No Abstract]   [Full Text] [Related]  

  • 35. Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors.
    Sommer ME; Hofmann KP; Heck M
    J Biol Chem; 2011 Mar; 286(9):7359-69. PubMed ID: 21169358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR).
    Beharry S; Zhong M; Molday RS
    J Biol Chem; 2004 Dec; 279(52):53972-9. PubMed ID: 15471866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Signaling states of rhodopsin in rod disk membranes lacking transducin βγ-complex.
    Lomonosova E; Kolesnikov AV; Kefalov VJ; Kisselev OG
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1225-33. PubMed ID: 22266510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective proteolysis of arrestin by calpain. Molecular characteristics and its effect on rhodopsin dephosphorylation.
    Azarian SM; King AJ; Hallett MA; Williams DS
    J Biol Chem; 1995 Oct; 270(41):24375-84. PubMed ID: 7592650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light scattering methods to monitor interactions between rhodopsin-containing membranes and soluble proteins.
    Heck M; Pulvermüller A; Hofmann KP
    Methods Enzymol; 2000; 315():329-47. PubMed ID: 10736711
    [No Abstract]   [Full Text] [Related]  

  • 40. Light-dependent association of Src with photoreceptor rod outer segment membrane proteins in vivo.
    Ghalayini AJ; Desai N; Smith KR; Holbrook RM; Elliott MH; Kawakatsu H
    J Biol Chem; 2002 Jan; 277(2):1469-76. PubMed ID: 11705988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.