These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21398481)

  • 1. Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile.
    Rodriguez-Palacios A; Lejeune JT
    Appl Environ Microbiol; 2011 May; 77(9):3085-91. PubMed ID: 21398481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the transient and persistent effects of heat on
    Pickering DS; Vernon JJ; Freeman J; Wilcox MH; Chilton CH
    J Med Microbiol; 2019 Oct; 68(10):1445-1454. PubMed ID: 31429817
    [No Abstract]   [Full Text] [Related]  

  • 3. Activate to eradicate: inhibition of Clostridium difficile spore outgrowth by the synergistic effects of osmotic activation and nisin.
    Nerandzic MM; Donskey CJ
    PLoS One; 2013; 8(1):e54740. PubMed ID: 23349961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of high-pressure-treated Bacillus subtilis spore populations using flow cytometry - Shedding light on spore superdormancy at 550 MPa.
    Heydenreich R; Delbrück AI; Peternell C; Trunet C; Mathys A
    Int J Food Microbiol; 2024 Sep; 422():110812. PubMed ID: 38970996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Resistance of Clostridium difficile Spores in Peptone Water and Pork Meat.
    Redondo-Solano M; Burson DE; Thippareddi H
    J Food Prot; 2016 Sep; 79(9):1468-1474. PubMed ID: 28221931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridium difficile survives minimal temperature recommended for cooking ground meats.
    Rodriguez-Palacios A; Reid-Smith RJ; Staempfli HR; Weese JS
    Anaerobe; 2010 Oct; 16(5):540-2. PubMed ID: 20488251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of cold storage and cooking on the viability of Clostridioides difficile spores in consumer foods.
    Marcos P; Glennon C; Whyte P; Rogers TR; McElroy M; Fanning S; Frias J; Bolton D
    Food Microbiol; 2023 Jun; 112():104215. PubMed ID: 36906315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, stability, and characteristics of high-pressure superdormant Bacillus subtilis spores.
    Delbrück AI; Zhang Y; Hug V; Trunet C; Mathys A
    Int J Food Microbiol; 2021 Apr; 343():109088. PubMed ID: 33621831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival and germination of Clostridium perfringens spores during heating and cooling of ground pork.
    Márquez-González M; Cabrera-Díaz E; Hardin MD; Harris KB; Lucia LM; Castillo A
    J Food Prot; 2012 Apr; 75(4):682-9. PubMed ID: 22488055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of Clostridium difficile spores by microwave irradiation.
    Ojha SC; Chankhamhaengdecha S; Singhakaew S; Ounjai P; Janvilisri T
    Anaerobe; 2016 Apr; 38():14-20. PubMed ID: 26546732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triggering germination represents a novel strategy to enhance killing of Clostridium difficile spores.
    Nerandzic MM; Donskey CJ
    PLoS One; 2010 Aug; 5(8):e12285. PubMed ID: 20808871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive model for Clostridium perfringens growth in roast beef during cooling and inhibition of spore germination and outgrowth by organic acid salts.
    Sánchez-Plata MX; Amézquita A; Blankenship E; Burson DE; Juneja V; Thippareddi H
    J Food Prot; 2005 Dec; 68(12):2594-605. PubMed ID: 16355831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate.
    Burns DA; Heap JT; Minton NP
    J Bacteriol; 2010 Feb; 192(3):657-64. PubMed ID: 19933358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase.
    Donnelly ML; Fimlaid KA; Shen A
    J Bacteriol; 2016 Jun; 198(11):1694-1707. PubMed ID: 27044622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moderate High-Pressure Superdormancy in
    Delbrück AI; Tritten Y; Nanni P; Heydenreich R; Mathys A
    Appl Environ Microbiol; 2022 Feb; 88(4):e0240621. PubMed ID: 34910565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of power ultrasound to enhance the thermal inactivation of Clostridium perfringens spores in beef slurry.
    Evelyn ; Silva FV
    Int J Food Microbiol; 2015 Aug; 206():17-23. PubMed ID: 25912313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superdormant spores of Bacillus species have elevated wet-heat resistance and temperature requirements for heat activation.
    Ghosh S; Zhang P; Li YQ; Setlow P
    J Bacteriol; 2009 Sep; 191(18):5584-91. PubMed ID: 19592590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subboiling Moist Heat Favors the Selection of Enteric Pathogen Clostridium difficile PCR Ribotype 078 Spores in Food.
    Rodriguez-Palacios A; Ilic S; LeJeune JT
    Can J Infect Dis Med Microbiol; 2016; 2016():1462405. PubMed ID: 27375748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-spore germination analyses reveal that calcium released during
    Ribis JW; Melo L; Shrestha S; Giacalone D; Rodriguez EE; Shen A; Rohlfing A
    mSphere; 2023 Aug; 8(4):e0000523. PubMed ID: 37338207
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy.
    Wang S; Shen A; Setlow P; Li YQ
    J Bacteriol; 2015 Jul; 197(14):2361-73. PubMed ID: 25939833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.