These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21398533)

  • 1. Catabolite repression of the Bacillus subtilis FadR regulon, which is involved in fatty acid catabolism.
    Tojo S; Satomura T; Matsuoka H; Hirooka K; Fujita Y
    J Bacteriol; 2011 May; 193(10):2388-95. PubMed ID: 21398533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation.
    Matsuoka H; Hirooka K; Fujita Y
    J Biol Chem; 2007 Feb; 282(8):5180-94. PubMed ID: 17189250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of two distinct catabolite-responsive elements in catabolite repression of the Bacillus subtilis myo-inositol (iol) operon.
    Miwa Y; Fujita Y
    J Bacteriol; 2001 Oct; 183(20):5877-84. PubMed ID: 11566986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
    Miwa Y; Nagura K; Eguchi S; Fukuda H; Deutscher J; Fujita Y
    Mol Microbiol; 1997 Mar; 23(6):1203-13. PubMed ID: 9106211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr.
    Fujita Y; Miwa Y; Galinier A; Deutscher J
    Mol Microbiol; 1995 Sep; 17(5):953-60. PubMed ID: 8596444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V; Boël G; Deutscher J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):433-8. PubMed ID: 11361075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis.
    Hirooka K; Kodoi Y; Satomura T; Fujita Y
    J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon catabolite control of the metabolic network in Bacillus subtilis.
    Fujita Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway.
    Meyer FM; Jules M; Mehne FM; Le Coq D; Landmann JJ; Görke B; Aymerich S; Stülke J
    J Bacteriol; 2011 Dec; 193(24):6939-49. PubMed ID: 22001508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CcpA-mediated catabolite activation of the Bacillus subtilis ilv-leu operon and its negation by either CodY- or TnrA-mediated negative regulation.
    Fujita Y; Satomura T; Tojo S; Hirooka K
    J Bacteriol; 2014 Nov; 196(21):3793-806. PubMed ID: 25157083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis.
    Inácio JM; Costa C; de Sá-Nogueira I
    Microbiology (Reading); 2003 Sep; 149(Pt 9):2345-2355. PubMed ID: 12949161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis.
    Tanaka K; Iwasaki K; Morimoto T; Matsuse T; Hasunuma T; Takenaka S; Chumsakul O; Ishikawa S; Ogasawara N; Yoshida K
    BMC Microbiol; 2015 Feb; 15():43. PubMed ID: 25880922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon.
    Galinier A; Deutscher J; Martin-Verstraete I
    J Mol Biol; 1999 Feb; 286(2):307-14. PubMed ID: 9973552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression.
    Darbon E; Servant P; Poncet S; Deutscher J
    Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catabolite repression of dra-nupC-pdp operon expression in Bacillus subtilis.
    Zeng X; Galinier A; Saxild HH
    Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2901-2908. PubMed ID: 11065368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis.
    Chauvaux S; Paulsen IT; Saier MH
    J Bacteriol; 1998 Feb; 180(3):491-7. PubMed ID: 9457849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses.
    Moreno MS; Schneider BL; Maile RR; Weyler W; Saier MH
    Mol Microbiol; 2001 Mar; 39(5):1366-81. PubMed ID: 11251851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD.
    Puri-Taneja A; Schau M; Chen Y; Hulett FM
    J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals.
    Gösseringer R; Küster E; Galinier A; Deutscher J; Hillen W
    J Mol Biol; 1997 Mar; 266(4):665-76. PubMed ID: 9102460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High- and low-affinity cre boxes for CcpA binding in Bacillus subtilis revealed by genome-wide analysis.
    Marciniak BC; Pabijaniak M; de Jong A; Dűhring R; Seidel G; Hillen W; Kuipers OP
    BMC Genomics; 2012 Aug; 13():401. PubMed ID: 22900538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.