These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 21398623)
1. A high-throughput fluorescence resonance energy transfer-based assay for DNA ligase. Shapiro AB; Eakin AE; Walkup GK; Rivin O J Biomol Screen; 2011 Jun; 16(5):486-93. PubMed ID: 21398623 [TBL] [Abstract][Full Text] [Related]
2. A high-throughput assay for the adenylation reaction of bacterial DNA ligase. Miesel L; Kravec C; Xin AT; McMonagle P; Ma S; Pichardo J; Feld B; Barrabee E; Palermo R Anal Biochem; 2007 Jul; 366(1):9-17. PubMed ID: 17493575 [TBL] [Abstract][Full Text] [Related]
3. Development of a fluorescence resonance energy transfer assay for measuring the activity of Streptococcus pneumoniae DNA ligase, an enzyme essential for DNA replication, repair, and recombination. Chen XC; Hentz NG; Hubbard F; Meier TI; Sittampalam S; Zhao G Anal Biochem; 2002 Oct; 309(2):232-40. PubMed ID: 12413456 [TBL] [Abstract][Full Text] [Related]
4. Complete steady-state rate equation for DNA ligase and its use for measuring product kinetic parameters of NAD⁺-dependent DNA ligase from Haemophilus influenzae. Shapiro AB BMC Res Notes; 2014 May; 7():287. PubMed ID: 24885075 [TBL] [Abstract][Full Text] [Related]
5. Discovery and Optimization of NAD+-Dependent DNA Ligase Inhibitors as Novel Antibacterial Compounds. Bi F; Ma R; Ma S Curr Pharm Des; 2017; 23(14):2117-2130. PubMed ID: 27784238 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of an inhibitor specific to bacterial NAD+-dependent DNA ligases. Meier TI; Yan D; Peery RB; McAllister KA; Zook C; Peng SB; Zhao G FEBS J; 2008 Nov; 275(21):5258-71. PubMed ID: 18795946 [TBL] [Abstract][Full Text] [Related]
7. A homogeneous, high-throughput fluorescence resonance energy transfer-based DNA polymerase assay. Shapiro A; Rivin O; Gao N; Hajec L Anal Biochem; 2005 Dec; 347(2):254-61. PubMed ID: 16266678 [TBL] [Abstract][Full Text] [Related]
8. NAD+-dependent DNA ligase (Rv3014c) from Mycobacterium tuberculosis: novel structure-function relationship and identification of a specific inhibitor. Srivastava SK; Dube D; Kukshal V; Jha AK; Hajela K; Ramachandran R Proteins; 2007 Oct; 69(1):97-111. PubMed ID: 17557328 [TBL] [Abstract][Full Text] [Related]
9. The kinetic mechanism of S. pneumoniae DNA ligase and inhibition by adenosine-based antibacterial compounds. Jahić H; Liu CF; Thresher J; Livchak S; Wang H; Ehmann DE Biochem Pharmacol; 2012 Sep; 84(5):654-60. PubMed ID: 22743594 [TBL] [Abstract][Full Text] [Related]
10. Discovery of bacterial NAD+-dependent DNA ligase inhibitors: optimization of antibacterial activity. Stokes SS; Huynh H; Gowravaram M; Albert R; Cavero-Tomas M; Chen B; Harang J; Loch JT; Lu M; Mullen GB; Zhao S; Liu CF; Mills SD Bioorg Med Chem Lett; 2011 Aug; 21(15):4556-60. PubMed ID: 21719282 [TBL] [Abstract][Full Text] [Related]
11. Bacterial DNA replication enzymes as targets for antibacterial drug discovery. Sanyal G; Doig P Expert Opin Drug Discov; 2012 Apr; 7(4):327-39. PubMed ID: 22458504 [TBL] [Abstract][Full Text] [Related]
13. A high-throughput continuous assay for screening and characterization of inhibitors of HIV reverse-transcriptase DNA polymerase activity. Cauchon E; Falgueyret JP; Auger A; Melnyk RA J Biomol Screen; 2011 Jun; 16(5):518-24. PubMed ID: 21474837 [TBL] [Abstract][Full Text] [Related]
15. Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I. Srivastava SK; Dube D; Tewari N; Dwivedi N; Tripathi RP; Ramachandran R Nucleic Acids Res; 2005; 33(22):7090-101. PubMed ID: 16361267 [TBL] [Abstract][Full Text] [Related]
16. NAD(+)-dependent DNA ligase: a novel target waiting for the right inhibitor. Dwivedi N; Dube D; Pandey J; Singh B; Kukshal V; Ramachandran R; Tripathi RP Med Res Rev; 2008 Jul; 28(4):545-68. PubMed ID: 18080330 [TBL] [Abstract][Full Text] [Related]
17. A high-throughput, homogeneous, fluorescence resonance energy transfer-based assay for phospho-N-acetylmuramoyl-pentapeptide translocase (MraY). Shapiro AB; Jahić H; Gao N; Hajec L; Rivin O J Biomol Screen; 2012 Jun; 17(5):662-72. PubMed ID: 22337656 [TBL] [Abstract][Full Text] [Related]
18. Novel bacterial NAD+-dependent DNA ligase inhibitors with broad-spectrum activity and antibacterial efficacy in vivo. Mills SD; Eakin AE; Buurman ET; Newman JV; Gao N; Huynh H; Johnson KD; Lahiri S; Shapiro AB; Walkup GK; Yang W; Stokes SS Antimicrob Agents Chemother; 2011 Mar; 55(3):1088-96. PubMed ID: 21189350 [TBL] [Abstract][Full Text] [Related]
19. Pharmacophore-based screening and identification of novel human ligase I inhibitors with potential anticancer activity. Krishna S; Singh DK; Meena S; Datta D; Siddiqi MI; Banerjee D J Chem Inf Model; 2014 Mar; 54(3):781-92. PubMed ID: 24593844 [TBL] [Abstract][Full Text] [Related]
20. Negishi cross-coupling enabled synthesis of novel NAD(+)-dependent DNA ligase inhibitors and SAR development. Murphy-Benenato KE; Gingipalli L; Boriack-Sjodin PA; Martinez-Botella G; Carcanague D; Eyermann CJ; Gowravaram M; Harang J; Hale MR; Ioannidis G; Jahic H; Johnstone M; Kutschke A; Laganas VA; Loch JT; Miller MD; Oguto H; Patel SJ Bioorg Med Chem Lett; 2015 Nov; 25(22):5172-7. PubMed ID: 26463129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]