These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21398623)

  • 21. A high-throughput resonance energy transfer assay for Staphylococcus aureus DNA ligase.
    Benson EL; Tomich PK; Wolfe ML; Choi GH; Hagadorn JC; Mutchler VT; Garlick RL
    Anal Biochem; 2004 Jan; 324(2):298-300. PubMed ID: 14690695
    [No Abstract]   [Full Text] [Related]  

  • 22. Identification and characterization of inhibitors of Haemophilus influenzae acetohydroxyacid synthase.
    Gedi V; Moon JY; Lim WM; Lee MY; Lee SC; Koo BS; Govindwar S; Yoon MY
    Enzyme Microb Technol; 2011 Jun; 49(1):1-5. PubMed ID: 22112263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents.
    Zhu X; Fu A; Luo KQ
    Biochem Biophys Res Commun; 2012 Feb; 418(4):641-6. PubMed ID: 22290227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A high-throughput absorbance-based assay for methionine produced by methionine aminopeptidase using S-adenosyl-L-methionine synthetase.
    Shapiro AB; Gao N; Thresher J; Walkup GK; Whiteaker J
    J Biomol Screen; 2011 Jun; 16(5):494-505. PubMed ID: 21402755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium Deinococcus radiodurans.
    Blasius M; Buob R; Shevelev IV; Hubscher U
    BMC Mol Biol; 2007 Aug; 8():69. PubMed ID: 17705817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence-based high-throughput screening assay for drug interactions with UGT1A6.
    Soikkeli A; Kurkela M; Hirvonen J; Yliperttula M; Finel M
    Assay Drug Dev Technol; 2011 Oct; 9(5):496-502. PubMed ID: 21438674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enoyl-ACP reductase (FabI) of Haemophilus influenzae: steady-state kinetic mechanism and inhibition by triclosan and hexachlorophene.
    Marcinkeviciene J; Jiang W; Kopcho LM; Locke G; Luo Y; Copeland RA
    Arch Biochem Biophys; 2001 Jun; 390(1):101-8. PubMed ID: 11368521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of NAD(+) -dependent DNA ligase of mycobacteria as a potential target for antibiotics.
    Korycka-Machala M; Rychta E; Brzostek A; Sayer HR; Rumijowska-Galewicz A; Bowater RP; Dziadek J
    Antimicrob Agents Chemother; 2007 Aug; 51(8):2888-97. PubMed ID: 17548501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery of bacterial NAD⁺-dependent DNA ligase inhibitors: improvements in clearance of adenosine series.
    Stokes SS; Gowravaram M; Huynh H; Lu M; Mullen GB; Chen B; Albert R; O'Shea TJ; Rooney MT; Hu H; Newman JV; Mills SD
    Bioorg Med Chem Lett; 2012 Jan; 22(1):85-9. PubMed ID: 22154350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design, synthesis and biological evaluation of potent NAD+-dependent DNA ligase inhibitors as potential antibacterial agents. Part I: aminoalkoxypyrimidine carboxamides.
    Gu W; Wang T; Maltais F; Ledford B; Kennedy J; Wei Y; Gross CH; Parsons J; Duncan L; Arends SJ; Moody C; Perola E; Green J; Charifson PS
    Bioorg Med Chem Lett; 2012 Jun; 22(11):3693-8. PubMed ID: 22560473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput screening for modulators of protein-protein interactions: use of photonic crystal biosensors and complementary technologies.
    Heeres JT; Hergenrother PJ
    Chem Soc Rev; 2011 Aug; 40(8):4398-410. PubMed ID: 21140010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibiting NAD+-dependent DNA ligase activity with 2-(cyclopentyloxy)-5'-deoxyadenosine (CPOdA) offers a new tool for DNA replication and repair studies in the model archaeon Haloferax volcanii.
    Giroux X; MacNeill SA
    FEMS Microbiol Lett; 2015 Nov; 362(21):. PubMed ID: 26420852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-yield production and characterization of biologically active GST-tagged human topoisomerase IIα protein in insect cells for the development of a high-throughput assay.
    Singh PK; Chan PF; Hibbs MJ; Vazquez MJ; Segura DC; Thomas DA; Theobald AJ; Gallagher KT; Hassan NJ
    Protein Expr Purif; 2011 Apr; 76(2):165-72. PubMed ID: 20709174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of mimivirus NAD+-dependent DNA ligase.
    Benarroch D; Shuman S
    Virology; 2006 Sep; 353(1):133-43. PubMed ID: 16844179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel DNA ligase with broad nucleotide cofactor specificity from the hyperthermophilic crenarchaeon Sulfophobococcus zilligii: influence of ancestral DNA ligase on cofactor utilization.
    Sun Y; Seo MS; Kim JH; Kim YJ; Kim GA; Lee JI; Lee JH; Kwon ST
    Environ Microbiol; 2008 Dec; 10(12):3212-24. PubMed ID: 18647334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can specifically target bacterial DNA ligases and can distinguish them from human DNA ligase I.
    Yadav N; Khanam T; Shukla A; Rai N; Hajela K; Ramachandran R
    Org Biomol Chem; 2015 May; 13(19):5475-87. PubMed ID: 25875403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a high-throughput fluorescence polarization assay for the discovery of phosphopantetheinyl transferase inhibitors.
    Duckworth BP; Aldrich CC
    Anal Biochem; 2010 Aug; 403(1-2):13-9. PubMed ID: 20382102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Label-free electrochemical monitoring of DNA ligase activity.
    Vacek J; Cahova K; Palecek E; Bullard DR; Lavesa-Curto M; Bowater RP; Fojta M
    Anal Chem; 2008 Oct; 80(19):7609-13. PubMed ID: 18778033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification through structure-based methods of a bacterial NAD(+)-dependent DNA ligase inhibitor that avoids known resistance mutations.
    Murphy-Benenato K; Wang H; McGuire HM; Davis HE; Gao N; Prince DB; Jahic H; Stokes SS; Boriack-Sjodin PA
    Bioorg Med Chem Lett; 2014 Jan; 24(1):360-6. PubMed ID: 24287382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The herbicide ketoclomazone inhibits 1-deoxy-D-xylulose 5-phosphate synthase in the 2-C-methyl-D-erythritol 4-phosphate pathway and shows antibacterial activity against Haemophilus influenzae.
    Matsue Y; Mizuno H; Tomita T; Asami T; Nishiyama M; Kuzuyama T
    J Antibiot (Tokyo); 2010 Oct; 63(10):583-8. PubMed ID: 20808315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.