These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 21399784)
1. Cellular uptake and subcellular distribution of ruthenium-based metallodrugs under clinical investigation versus cisplatin. Groessl M; Zava O; Dyson PJ Metallomics; 2011 Jun; 3(6):591-9. PubMed ID: 21399784 [TBL] [Abstract][Full Text] [Related]
2. Cytotoxicity of the organic ruthenium anticancer drug Nami-A is correlated with DNA binding in four different human tumor cell lines. Pluim D; van Waardenburg RC; Beijnen JH; Schellens JH Cancer Chemother Pharmacol; 2004 Jul; 54(1):71-8. PubMed ID: 15034754 [TBL] [Abstract][Full Text] [Related]
3. Determination of cisplatin 1,2-intrastrand guanine-guanine DNA adducts in human leukocytes by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. Harrington CF; Le Pla RC; Jones GD; Thomas AL; Farmer PB Chem Res Toxicol; 2010 Aug; 23(8):1313-21. PubMed ID: 20666396 [TBL] [Abstract][Full Text] [Related]
4. Combination of metallomics and proteomics to study the effects of the metallodrug RAPTA-T on human cancer cells. Wolters DA; Stefanopoulou M; Dyson PJ; Groessl M Metallomics; 2012 Nov; 4(11):1185-96. PubMed ID: 23014849 [TBL] [Abstract][Full Text] [Related]
5. Transferrin serves as a mediator to deliver organometallic ruthenium(II) anticancer complexes into cells. Guo W; Zheng W; Luo Q; Li X; Zhao Y; Xiong S; Wang F Inorg Chem; 2013 May; 52(9):5328-38. PubMed ID: 23586415 [TBL] [Abstract][Full Text] [Related]
7. Distinct cellular fates for KP1019 and NAMI-A determined by X-ray fluorescence imaging of single cells. Aitken JB; Antony S; Weekley CM; Lai B; Spiccia L; Harris HH Metallomics; 2012 Oct; 4(10):1051-6, 1007. PubMed ID: 22907648 [TBL] [Abstract][Full Text] [Related]
8. EPR as a probe of the intracellular speciation of ruthenium(III) anticancer compounds. Webb MI; Walsby CJ Metallomics; 2013 Dec; 5(12):1624-33. PubMed ID: 24057014 [TBL] [Abstract][Full Text] [Related]
9. The role of cisplatin and NAMI-A plasma-protein interactions in relation to combination therapy. Khalaila I; Bergamo A; Bussy F; Sava G; Dyson PJ Int J Oncol; 2006 Jul; 29(1):261-8. PubMed ID: 16773208 [TBL] [Abstract][Full Text] [Related]
10. Intracellular protein binding patterns of the anticancer ruthenium drugs KP1019 and KP1339. Heffeter P; Böck K; Atil B; Reza Hoda MA; Körner W; Bartel C; Jungwirth U; Keppler BK; Micksche M; Berger W; Koellensperger G J Biol Inorg Chem; 2010 Jun; 15(5):737-48. PubMed ID: 20221888 [TBL] [Abstract][Full Text] [Related]
11. The Deceptively Similar Ruthenium(III) Drug Candidates KP1019 and NAMI-A Have Different Actions. What Did We Learn in the Past 30 Years? Alessio E; Messori L Met Ions Life Sci; 2018 Feb; 18():. PubMed ID: 29394024 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a ruthenium(III)/NAMI-A adduct with bovine serum albumin that exhibits a high anti-metastatic activity. Liu M; Lim ZJ; Gwee YY; Levina A; Lay PA Angew Chem Int Ed Engl; 2010 Feb; 49(9):1661-4. PubMed ID: 20127775 [No Abstract] [Full Text] [Related]
14. Determination of ruthenium originating from the investigational anti-cancer drug NAMI-A in human plasma ultrafiltrate, plasma, and urine by inductively coupled plasma mass spectrometry. Brouwers EE; Tibben MM; Rosing H; Schellens JH; Beijnen JH Rapid Commun Mass Spectrom; 2007; 21(9):1521-30. PubMed ID: 17410551 [TBL] [Abstract][Full Text] [Related]
15. DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Brabec V; Nováková O Drug Resist Updat; 2006 Jun; 9(3):111-22. PubMed ID: 16790363 [TBL] [Abstract][Full Text] [Related]
16. Ruthenium anticancer agent KP1019 binds more tightly than NAMI-A to tRNA Dwyer BG; Johnson E; Cazares E; McFarlane Holman KL; Kirk SR J Inorg Biochem; 2018 May; 182():177-183. PubMed ID: 29501978 [TBL] [Abstract][Full Text] [Related]
17. Ru binding to RNA following treatment with the antimetastatic prodrug NAMI-A in Saccharomyces cerevisiae and in vitro. Hostetter AA; Miranda ML; DeRose VJ; McFarlane Holman KL J Biol Inorg Chem; 2011 Dec; 16(8):1177-85. PubMed ID: 21739255 [TBL] [Abstract][Full Text] [Related]
18. DNA as a possible target for antitumor ruthenium(III) complexes. Gallori E; Vettori C; Alessio E; Vilchez FG; Vilaplana R; Orioli P; Casini A; Messori L Arch Biochem Biophys; 2000 Apr; 376(1):156-62. PubMed ID: 10729201 [TBL] [Abstract][Full Text] [Related]
19. Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Bergamo A; Sava G Dalton Trans; 2011 Aug; 40(31):7817-23. PubMed ID: 21629963 [TBL] [Abstract][Full Text] [Related]
20. In vitro cell cycle arrest, in vivo action on solid metastasizing tumors, and host toxicity of the antimetastatic drug NAMI-A and cisplatin. Bergamo A; Gagliardi R; Scarcia V; Furlani A; Alessio E; Mestroni G; Sava G J Pharmacol Exp Ther; 1999 Apr; 289(1):559-64. PubMed ID: 10087050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]