These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

669 related articles for article (PubMed ID: 21399830)

  • 21. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.
    Masrie M; Majlis BY; Yunas J
    Biomed Mater Eng; 2014; 24(6):1951-8. PubMed ID: 25226891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Benchtop fabrication of three-dimensional reconfigurable microfluidic devices from paper-polymer composite.
    Han YL; Wang W; Hu J; Huang G; Wang S; Lee WG; Lu TJ; Xu F
    Lab Chip; 2013 Dec; 13(24):4745-9. PubMed ID: 24172608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Microfabrication Method of PCL Scaffolds for Tissue Engineering by Simultaneous Two PDMS Molds Replication.
    Najafi Sani H; Abrinia K; Haghighipour N; George D; Remond Y; Baniassadi M
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4763-4778. PubMed ID: 34515461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients.
    Kamei K; Mashimo Y; Koyama Y; Fockenberg C; Nakashima M; Nakajima M; Li J; Chen Y
    Biomed Microdevices; 2015 Apr; 17(2):36. PubMed ID: 25686903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of a Three-Layer PDMS Pneumatic Microfluidic Chip for Micro Liquid Sample Operation.
    Liu X; Li S
    SLAS Technol; 2020 Apr; 25(2):151-161. PubMed ID: 31425005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid prototyping of polydimethylsiloxane (PDMS) microchips using electrohydrodynamic jet printing: Application to electrokinetic assays.
    Choubey A; Dubey K; Bahga SS
    Electrophoresis; 2023 Apr; 44(7-8):725-732. PubMed ID: 36774545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications.
    Yue W; Li CW; Xu T; Yang M
    Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mold Embossing
    Gao S; Zhan T; Zhou W; Niu F; Min S; Xiao A; Xu B
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31755-31764. PubMed ID: 37347208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining.
    Zeinali S; Çetin B; Oliaei SN; Karpat Y
    Electrophoresis; 2015 Jul; 36(13):1432-42. PubMed ID: 25808433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold.
    Kang K; Oh S; Yi H; Han S; Hwang Y
    Biomicrofluidics; 2018 Jan; 12(1):014105. PubMed ID: 29375726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of polydimethylsiloxane microfluidics using SU-8 molds.
    Zaouk R; Park BY; Madou MJ
    Methods Mol Biol; 2006; 321():17-21. PubMed ID: 16508061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maskless fabrication of cell-laden microfluidic chips with localized surface functionalization for the co-culture of cancer cells.
    Hamid Q; Wang C; Snyder J; Williams S; Liu Y; Sun W
    Biofabrication; 2015 Mar; 7(1):015012. PubMed ID: 25727298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.
    Yang X; Forouzan O; Burns JM; Shevkoplyas SS
    Lab Chip; 2011 Oct; 11(19):3231-40. PubMed ID: 21847500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels.
    Fatona A; Chen Y; Reid M; Brook MA; Moran-Mirabal JM
    Lab Chip; 2015 Nov; 15(22):4322-30. PubMed ID: 26400365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
    Cole RH; Tran TM; Abate AR
    J Vis Exp; 2015 Dec; (106):e53516. PubMed ID: 26780079
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.
    Fiorini GS; Jeffries GD; Lim DS; Kuyper CL; Chiu DT
    Lab Chip; 2003 Aug; 3(3):158-63. PubMed ID: 15100767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patterning microbeads inside poly(dimethylsiloxane) microfluidic channels and its application for immobilized microfluidic enzyme reactors.
    Zhang Q; Xu JJ; Chen HY
    Electrophoresis; 2006 Dec; 27(24):4943-51. PubMed ID: 17117456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple method for fabricating patterned curvilinear microstructures in poly(dimethylsiloxane) by selective wetting.
    Ke X; Tang J
    Chemphyschem; 2013 Apr; 14(5):946-51. PubMed ID: 23436571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.