These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 21399923)
1. NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase. Rishikesan S; Thaker YR; Grüber G J Bioenerg Biomembr; 2011 Apr; 43(2):187-93. PubMed ID: 21399923 [TBL] [Abstract][Full Text] [Related]
2. Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae. Basak S; Lim J; Manimekalai MS; Balakrishna AM; Grüber G J Biol Chem; 2013 Apr; 288(17):11930-9. PubMed ID: 23476018 [TBL] [Abstract][Full Text] [Related]
3. Structural elements of the C-terminal domain of subunit E (E₁₃₃₋₂₂₂) from the Saccharomyces cerevisiae V₁V₀ ATPase determined by solution NMR spectroscopy. Rishikesan S; Grüber G J Bioenerg Biomembr; 2011 Oct; 43(5):447-55. PubMed ID: 21826517 [TBL] [Abstract][Full Text] [Related]
4. The NMR solution structure of subunit G (G(61)(-)(101)) of the eukaryotic V1VO ATPase from Saccharomyces cerevisiae. Rishikesan S; Manimekalai MS; Grüber G Biochim Biophys Acta; 2010 Oct; 1798(10):1961-8. PubMed ID: 20599533 [TBL] [Abstract][Full Text] [Related]
5. Assembly of subunit d (Vma6p) and G (Vma10p) and the NMR solution structure of subunit G (G(1-59)) of the Saccharomyces cerevisiae V(1)V(O) ATPase. Rishikesan S; Gayen S; Thaker YR; Vivekanandan S; Manimekalai MS; Yau YH; Shochat SG; Grüber G Biochim Biophys Acta; 2009 Apr; 1787(4):242-51. PubMed ID: 19344662 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopical identification of residues of subunit G of the yeast V-ATPase in its connection with subunit E. Rishikesan S; Thaker YR; Priya R; Gayen S; Manimekalai MS; Hunke C; Gruber G Mol Membr Biol; 2008 Aug; 25(5):400-10. PubMed ID: 18651318 [TBL] [Abstract][Full Text] [Related]
7. Solution structure of subunit a, a₁₀₄₋₃₆₃, of the Saccharomyces cerevisiae V-ATPase and the importance of its C-terminus in structure formation. Dip PV; Saw WG; Roessle M; Marshansky V; Grüber G J Bioenerg Biomembr; 2012 Jun; 44(3):341-50. PubMed ID: 22562380 [TBL] [Abstract][Full Text] [Related]
8. Defined sites of interaction between subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the stator structure of the vacuolar H+-ATPase. Jones RP; Durose LJ; Findlay JB; Harrison MA Biochemistry; 2005 Mar; 44(10):3933-41. PubMed ID: 15751969 [TBL] [Abstract][Full Text] [Related]
9. Probing subunit-subunit interactions in the yeast vacuolar ATPase by peptide arrays. Parsons LS; Wilkens S PLoS One; 2012; 7(10):e46960. PubMed ID: 23071676 [TBL] [Abstract][Full Text] [Related]
10. Identification of a domain in the V0 subunit d that is critical for coupling of the yeast vacuolar proton-translocating ATPase. Owegi MA; Pappas DL; Finch MW; Bilbo SA; Resendiz CA; Jacquemin LJ; Warrier A; Trombley JD; McCulloch KM; Margalef KL; Mertz MJ; Storms JM; Damin CA; Parra KJ J Biol Chem; 2006 Oct; 281(40):30001-14. PubMed ID: 16891312 [TBL] [Abstract][Full Text] [Related]
11. Structural properties of a peptide derived from H+ -V-ATPase subunit a. Vermeer LS; Réat V; Hemminga MA; Milon A Biochim Biophys Acta; 2009 May; 1788(5):1204-12. PubMed ID: 19249284 [TBL] [Abstract][Full Text] [Related]
12. Solution structure of subunit F (Vma7p) of the eukaryotic V(1)V(O) ATPase from Saccharomyces cerevisiae derived from SAXS and NMR spectroscopy. Basak S; Gayen S; Thaker YR; Manimekalai MS; Roessle M; Hunke C; Grüber G Biochim Biophys Acta; 2011 Jan; 1808(1):360-8. PubMed ID: 20840841 [TBL] [Abstract][Full Text] [Related]
13. Vma9p (subunit e) is an integral membrane V0 subunit of the yeast V-ATPase. Compton MA; Graham LA; Stevens TH J Biol Chem; 2006 Jun; 281(22):15312-9. PubMed ID: 16569636 [TBL] [Abstract][Full Text] [Related]
14. Molecular Interactions and Cellular Itinerary of the Yeast RAVE (Regulator of the H+-ATPase of Vacuolar and Endosomal Membranes) Complex. Smardon AM; Nasab ND; Tarsio M; Diakov TT; Kane PM J Biol Chem; 2015 Nov; 290(46):27511-23. PubMed ID: 26405040 [TBL] [Abstract][Full Text] [Related]
15. Expression, purification and secondary structure analysis of Saccharomyces cerevisiae vacuolar membrane H+-ATPase subunit F (Vma7p). Jones RP; Hunt IE; Jaeger J; Ward A; O'Reilly J; Barratt EA; Findlay JB; Harrison MA Mol Membr Biol; 2001; 18(4):283-90. PubMed ID: 11780757 [TBL] [Abstract][Full Text] [Related]
16. Mutational analysis of the stator subunit E of the yeast V-ATPase. Owegi MA; Carenbauer AL; Wick NM; Brown JF; Terhune KL; Bilbo SA; Weaver RS; Shircliff R; Newcomb N; Parra-Belky KJ J Biol Chem; 2005 May; 280(18):18393-402. PubMed ID: 15718227 [TBL] [Abstract][Full Text] [Related]
17. The boxing glove shape of subunit d of the yeast V-ATPase in solution and the importance of disulfide formation for folding of this protein. Thaker YR; Roessle M; Grüber G J Bioenerg Biomembr; 2007 Aug; 39(4):275-89. PubMed ID: 17896169 [TBL] [Abstract][Full Text] [Related]
18. Association of the eukaryotic V1VO ATPase subunits a with d and d with A. Thaker YR; Hunke C; Yau YH; Shochat SG; Li Y; Grüber G FEBS Lett; 2009 Apr; 583(7):1090-5. PubMed ID: 19289121 [TBL] [Abstract][Full Text] [Related]
19. Topological characterization of the c, c', and c" subunits of the vacuolar ATPase from the yeast Saccharomyces cerevisiae. Flannery AR; Graham LA; Stevens TH J Biol Chem; 2004 Sep; 279(38):39856-62. PubMed ID: 15252052 [TBL] [Abstract][Full Text] [Related]
20. Rotational catalysis in proton pumping ATPases: from E. coli F-ATPase to mammalian V-ATPase. Futai M; Nakanishi-Matsui M; Okamoto H; Sekiya M; Nakamoto RK Biochim Biophys Acta; 2012 Oct; 1817(10):1711-21. PubMed ID: 22459334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]