These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 21399940)

  • 1. Diurnal rodents as animal models of human central vision: characterisation of the retina of the sand rat Psammomys obsesus.
    Saïdi T; Mbarek S; Chaouacha-Chekir RB; Hicks D
    Graefes Arch Clin Exp Ophthalmol; 2011 Jul; 249(7):1029-37. PubMed ID: 21399940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreceptor organization and rhythmic phagocytosis in the nile rat Arvicanthis ansorgei: a novel diurnal rodent model for the study of cone pathophysiology.
    Bobu C; Craft CM; Masson-Pevet M; Hicks D
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3109-18. PubMed ID: 16799057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the Retinal Function of Psammomys obesus: A Diurnal Rodent Model to Study Human Retinal Function.
    Dellaa A; Polosa A; Mbarek S; Hammoum I; Messaoud R; Amara S; Azaiz R; Charfeddine R; Dogui M; Khairallah M; Lachapelle P; Ben Chaouacha-Chekir R
    Curr Eye Res; 2017 Jan; 42(1):79-87. PubMed ID: 27216715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreceptor organisation and phenotypic characterization in retinas of two diurnal rodent species: potential use as experimental animal models for human vision research.
    Bobu C; Lahmam M; Vuillez P; Ouarour A; Hicks D
    Vision Res; 2008 Feb; 48(3):424-32. PubMed ID: 17928024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian-clock driven cone-like photoreceptor phagocytosis in the neural retina leucine zipper gene knockout mouse.
    Krigel A; Felder-Schmittbuhl MP; Hicks D
    Mol Vis; 2010 Dec; 16():2873-81. PubMed ID: 21203345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sand rat, Psammomys obesus, develops type 2 diabetic retinopathy similar to humans.
    Saïdi T; Mbarek S; Omri S; Behar-Cohen F; Chaouacha-Chekir RB; Hicks D
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):8993-9004. PubMed ID: 21989730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short and mid-wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus).
    Dkhissi-Benyahya O; Szel A; Degrip WJ; Cooper HM
    J Comp Neurol; 2001 Oct; 438(4):490-504. PubMed ID: 11559903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topographic arrangement of S-cone photoreceptors in the retina of the diurnal Nile grass rat (Arvicanthis niloticus).
    Gaillard F; Kuny S; Sauvé Y
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5426-34. PubMed ID: 19553614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual cone and rod properties in subterranean African mole-rats (Rodentia, Bathyergidae).
    Peichl L; Nemec P; Burda H
    Eur J Neurosci; 2004 Mar; 19(6):1545-58. PubMed ID: 15066151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The topography of rod and cone photoreceptors in the retina of the ground squirrel.
    Kryger Z; Galli-Resta L; Jacobs GH; Reese BE
    Vis Neurosci; 1998; 15(4):685-91. PubMed ID: 9682870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The visual cycle of the cone photoreceptors of the retina.
    Wolf G
    Nutr Rev; 2004 Jul; 62(7 Pt 1):283-6. PubMed ID: 15384919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular phenotype atlas of the zebrafish retina.
    Marc RE; Cameron D
    J Neurocytol; 2001 Jul; 30(7):593-654. PubMed ID: 12118163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predominant rod photoreceptor degeneration in Leber congenital amaurosis.
    van der Spuy J; Munro PM; Luthert PJ; Preising MN; Bek T; Heegaard S; Cheetham ME
    Mol Vis; 2005 Jul; 11():542-53. PubMed ID: 16052170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The topography of rods, cones and intrinsically photosensitive retinal ganglion cells in the retinas of a nocturnal (Micaelamys namaquensis) and a diurnal (Rhabdomys pumilio) rodent.
    van der Merwe I; Lukáts Á; Bláhová V; Oosthuizen MK; Bennett NC; Němec P
    PLoS One; 2018; 13(8):e0202106. PubMed ID: 30092025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mouse-like retinal cone phenotype in the Syrian hamster: S opsin coexpressed with M opsin in a common cone photoreceptor.
    Glösmann M; Ahnelt PK
    Brain Res; 2002 Mar; 929(1):139-46. PubMed ID: 11852040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas.
    Dang L; Pulukuri S; Mears AJ; Swaroop A; Reese BE; Sitaramayya A
    Mol Vis; 2004 May; 10():323-7. PubMed ID: 15152186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of retinal photoreceptor phagocytosis in a diurnal mammal by circadian clocks and ambient lighting.
    Bobu C; Hicks D
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3495-502. PubMed ID: 19234351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lamina formation in the Mongolian gerbil retina (Meriones unguiculatus).
    Bytyqi AH; Layer PG
    Anat Embryol (Berl); 2005 Feb; 209(3):217-25. PubMed ID: 15668778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topography of ganglion cells and photoreceptors in the sheep retina.
    Shinozaki A; Hosaka Y; Imagawa T; Uehara M
    J Comp Neurol; 2010 Jun; 518(12):2305-15. PubMed ID: 20437529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cone loss is delayed relative to rod loss during induced retinal degeneration in the diurnal cone-rich rodent Arvicanthis ansorgei.
    Boudard DL; Tanimoto N; Huber G; Beck SC; Seeliger MW; Hicks D
    Neuroscience; 2010 Sep; 169(4):1815-30. PubMed ID: 20600653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.