BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21400585)

  • 1. Reversible phosphorylation regulation of NADPH-linked polyol dehydrogenase in the freeze-avoiding gall moth, Epiblema scudderiana: role in glycerol metabolism.
    Holden HA; Storey KB
    Arch Insect Biochem Physiol; 2011 May; 77(1):32-44. PubMed ID: 21400585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of protein phosphatases and cAMP-dependent protein kinase in a freeze-avoiding insect, Epiblema scudderiana.
    Pfister TD; Storey KB
    Arch Insect Biochem Physiol; 2006 May; 62(1):43-54. PubMed ID: 16612809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of hexokinase in a freeze avoiding insect: role in the winter production of glycerol.
    Muise AM; Storey KB
    Arch Insect Biochem Physiol; 2001 May; 47(1):29-34. PubMed ID: 11317333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In cold-hardy insects, seasonal, temperature, and reversible phosphorylation controls regulate sarco/endoplasmic reticulum Ca2+-ATPase (SERCA).
    McMullen DC; Ramnanan CJ; Storey KB
    Physiol Biochem Zool; 2010; 83(4):677-86. PubMed ID: 20491546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMP-activated protein kinase and metabolic regulation in cold-hardy insects.
    Rider MH; Hussain N; Dilworth SM; Storey JM; Storey KB
    J Insect Physiol; 2011 Nov; 57(11):1453-62. PubMed ID: 21787782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insect cold hardiness: the role of mitogen-activated protein kinase and Akt signalling in freeze avoiding larvae of the goldenrod gall moth, Epiblema scudderiana.
    Zhang J; Storey KB
    Insect Mol Biol; 2017 Apr; 26(2):181-189. PubMed ID: 27880024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EsMlp, a muscle-LIM protein gene, is up-regulated during cold exposure in the freeze-avoiding larvae of Epiblema scudderiana.
    Bilgen T; English TE; McMullen DC; Storey KB
    Cryobiology; 2001 Aug; 43(1):11-20. PubMed ID: 11812047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated chaperone proteins are a feature of winter freeze avoidance by larvae of the goldenrod gall moth, Epiblema scudderiana.
    Zhang G; Storey JM; Storey KB
    J Insect Physiol; 2018 Apr; 106(Pt 2):106-113. PubMed ID: 28433751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of protein phosphatase-1 from two cold-hardy goldenrod gall insects.
    Pfister TD; Storey KB
    Arch Insect Biochem Physiol; 2002 Jan; 49(1):56-64. PubMed ID: 11754094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of Na+K+ -ATPase activity by reversible phosphorylation over the winter in a freeze-tolerant insect.
    McMullen DC; Storey KB
    J Insect Physiol; 2008 Jun; 54(6):1023-7. PubMed ID: 18501921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic underpinnings of freeze avoidance in the goldenrod gall moth, Epiblema scudderiana.
    Williamson SM; Ingelson-Filpula WA; Hadj-Moussa H; Storey KB
    J Insect Physiol; 2021 Oct; 134():104298. PubMed ID: 34411584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and profiling of miRNAs in the freeze-avoiding gall moth Epiblema scudderiana via next-generation sequencing.
    Lyons PJ; Crapoulet N; Storey KB; Morin P
    Mol Cell Biochem; 2015 Dec; 410(1-2):155-63. PubMed ID: 26328872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase A: purification and characterization of the enzyme from two cold-hardy goldenrod gall insects.
    Pfister TD; Storey KB
    Insect Biochem Mol Biol; 2002 May; 32(5):505-15. PubMed ID: 11891127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insect freeze tolerance: Roles of protein phosphatases and protein kinase A.
    Pfister TD; Storey KB
    Insect Biochem Mol Biol; 2006 Jan; 36(1):18-24. PubMed ID: 16360946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeze resistance in rainbow smelt (Osmerus mordax): seasonal pattern of glycerol and antifreeze protein levels and liver enzyme activity associated with glycerol production.
    Lewis JM; Ewart KV; Driedzic WR
    Physiol Biochem Zool; 2004; 77(3):415-22. PubMed ID: 15286915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adjustments of the enzymatic complement for polyol biosynthesis and accumulation in diapausing cold-acclimated adults of Pyrrhocoris apterus.
    Kostál V; Tollarová M; Sula J
    J Insect Physiol; 2004 Apr; 50(4):303-13. PubMed ID: 15081823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of differentially regulated micrornas in cold-hardy insects.
    Lyons PJ; Poitras JJ; Courteau LA; Storey KB; Morin P
    Cryo Letters; 2013; 34(1):83-9. PubMed ID: 23435712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal changes in glycerol content and enzyme activities in overwintering larvae of the Shonai ecotype of the rice stem borer, Chilo suppressalis Walker.
    Li YP; Ding L; Goto M
    Arch Insect Biochem Physiol; 2002 Jun; 50(2):53-61. PubMed ID: 12173290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker.
    Izumi Y; Sonoda S; Tsumuki H
    J Insect Physiol; 2007 Jul; 53(7):685-90. PubMed ID: 17543330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria of cold hardy insects: responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels.
    McMullen DC; Storey KB
    Insect Biochem Mol Biol; 2008 Mar; 38(3):367-73. PubMed ID: 18252250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.