These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21400591)

  • 21. Double-layer electrode based on TiO2 nanotubes arrays for enhancing photovoltaic properties in dye-sensitized solar cells.
    He Z; Que W; Sun P; Ren J
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12779-83. PubMed ID: 24304127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition.
    Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP
    Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A TiO2 Nanofiber-Carbon Nanotube-Composite Photoanode for Improved Efficiency in Dye-Sensitized Solar Cells.
    Macdonald TJ; Tune DD; Dewi MR; Gibson CT; Shapter JG; Nann T
    ChemSusChem; 2015 Oct; 8(20):3396-400. PubMed ID: 26383499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells.
    Chen HY; Zhang TL; Fan J; Kuang DB; Su CY
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9205-11. PubMed ID: 23962052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion.
    Kim DH; Seong WM; Park IJ; Yoo ES; Shin SS; Kim JS; Jung HS; Lee S; Hong KS
    Nanoscale; 2013 Dec; 5(23):11725-32. PubMed ID: 24114150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological construction of single-walled carbon nanotube electron transfer pathways in dye-sensitized solar cells.
    Inoue I; Watanabe K; Yamauchi H; Ishikawa Y; Yasueda H; Uraoka Y; Yamashita I
    ChemSusChem; 2014 Oct; 7(10):2805-10. PubMed ID: 25111295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells.
    Gao C; Li X; Lu B; Chen L; Wang Y; Teng F; Wang J; Zhang Z; Pan X; Xie E
    Nanoscale; 2012 Jun; 4(11):3475-81. PubMed ID: 22572999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile and effective synthesis of hierarchical TiO2 spheres for efficient dye-sensitized solar cells.
    Ye M; Chen C; Lv M; Zheng D; Guo W; Lin C
    Nanoscale; 2013 Jul; 5(14):6577-83. PubMed ID: 23759872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-performance large-scale flexible dye-sensitized solar cells based on anodic TiO2 nanotube arrays.
    Jen HP; Lin MH; Li LL; Wu HP; Huang WK; Cheng PJ; Diau EW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10098-104. PubMed ID: 24050628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial arrangement of carbon nanotubes in TiO2 photoelectrodes to enhance the efficiency of dye-sensitized solar cells.
    Nath NC; Sarker S; Ahammad AJ; Lee JJ
    Phys Chem Chem Phys; 2012 Apr; 14(13):4333-8. PubMed ID: 22336885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon nanohorns as integrative materials for efficient dye-sensitized solar cells.
    Costa RD; Feihl S; Kahnt A; Gambhir S; Officer DL; Wallace GG; Lucio MI; Herrero MA; Vázquez E; Syrgiannis Z; Prato M; Guldi DM
    Adv Mater; 2013 Dec; 25(45):6513-8. PubMed ID: 23996616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformal growth of anodic nanotubes for dye-sensitized solar cells: part II. Nonplanar electrode.
    Sun L; Zhang S; Wang Q
    J Nanosci Nanotechnol; 2014 Feb; 14(2):2050-64. PubMed ID: 24749473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.
    Ananth S; Vivek P; Arumanayagam T; Murugakoothan P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():420-6. PubMed ID: 24682058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesoporous submicrometer TiO(2) hollow spheres as scatterers in dye-sensitized solar cells.
    Dadgostar S; Tajabadi F; Taghavinia N
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):2964-8. PubMed ID: 22606936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells.
    Wang H; Bai Y; Wu Q; Zhou W; Zhang H; Li J; Guo L
    Phys Chem Chem Phys; 2011 Apr; 13(15):7008-13. PubMed ID: 21399795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmon-Induced Broadband Light-Harvesting for Dye-Sensitized Solar Cells Using a Mixture of Gold Nanocrystals.
    Zhang Y; Sun Z; Cheng S; Yan F
    ChemSusChem; 2016 Apr; 9(8):813-9. PubMed ID: 27110902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells.
    Yang L; Leung WW
    Adv Mater; 2011 Oct; 23(39):4559-62. PubMed ID: 21997306
    [No Abstract]   [Full Text] [Related]  

  • 38. Nano-TiO2 for dye-sensitized solar cells.
    Baraton MI
    Recent Pat Nanotechnol; 2012 Jan; 6(1):10-5. PubMed ID: 22023080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved dye sensitized solar cell performance in larger cell size by using TiO₂ nanotubes.
    Zhang Y; Khamwannah J; Kim H; Noh SY; Yang H; Jin S
    Nanotechnology; 2013 Feb; 24(4):045401. PubMed ID: 23299151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells.
    Zhu K; Vinzant TB; Neale NR; Frank AJ
    Nano Lett; 2007 Dec; 7(12):3739-46. PubMed ID: 17983250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.