BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21400618)

  • 1. Detection of transmitter release from single living cells using conducting polymer microelectrodes.
    Yang SY; Kim BN; Zakhidov AA; Taylor PG; Lee JK; Ober CK; Lindau M; Malliaras GG
    Adv Mater; 2011 Jun; 23(24):H184-8. PubMed ID: 21400618
    [No Abstract]   [Full Text] [Related]  

  • 2. Highly conformable conducting polymer electrodes for in vivo recordings.
    Khodagholy D; Doublet T; Gurfinkel M; Quilichini P; Ismailova E; Leleux P; Herve T; Sanaur S; Bernard C; Malliaras GG
    Adv Mater; 2011 Sep; 23(36):H268-72. PubMed ID: 21826747
    [No Abstract]   [Full Text] [Related]  

  • 3. Electroporation followed by electrochemical measurement of quantal transmitter release from single cells using a patterned microelectrode.
    Ghosh J; Liu X; Gillis KD
    Lab Chip; 2013 Jun; 13(11):2083-90. PubMed ID: 23598689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved surface-patterned platinum microelectrodes for the study of exocytotic events.
    Berberian K; Kisler K; Fang Q; Lindau M
    Anal Chem; 2009 Nov; 81(21):8734-40. PubMed ID: 19780579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smooth nanowire/polymer composite transparent electrodes.
    Gaynor W; Burkhard GF; McGehee MD; Peumans P
    Adv Mater; 2011 Jul; 23(26):2905-10. PubMed ID: 21538594
    [No Abstract]   [Full Text] [Related]  

  • 6. Sensing Conductive Hydrogels for Rapid Detection of Cytokines in Blood.
    Shin DS; Matharu Z; You J; Siltanen C; Vu T; Raghunathan VK; Stybayeva G; Hill AE; Revzin A
    Adv Healthc Mater; 2016 Mar; 5(6):659-64, 627. PubMed ID: 26799538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. White electroluminescence from star-like single polymer systems: 2,1,3-benzothiadiazole derivatives dopant as orange cores and polyfluorene host as six blue arms.
    Chen L; Li P; Cheng Y; Xie Z; Wang L; Jing X; Wang F
    Adv Mater; 2011 Jul; 23(26):2986-90. PubMed ID: 21598313
    [No Abstract]   [Full Text] [Related]  

  • 8. All polymer chip for amperometric studies of transmitter release from large groups of neuronal cells.
    Larsen ST; Taboryski R
    Analyst; 2012 Nov; 137(21):5057-61. PubMed ID: 22977881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Microbial Platform Based on Conducting Polymers for Evaluating Metabolic Activity.
    Saito M; Ishiki K; Nguyen DQ; Shiigi H
    Anal Chem; 2019 Oct; 91(20):12793-12798. PubMed ID: 31424202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored highly transparent composite hole-injection layer consisting of PEDOT:PSS and SiO2 nanoparticles for efficient polymer light-emitting diodes.
    Riedel B; Shen Y; Hauss J; Aichholz M; Tang X; Lemmer U; Gerken M
    Adv Mater; 2011 Feb; 23(6):740-5. PubMed ID: 21287634
    [No Abstract]   [Full Text] [Related]  

  • 11. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes.
    Sun X; Gillis KD
    Anal Chem; 2006 Apr; 78(8):2521-5. PubMed ID: 16615759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of poly(3,4-ethylenedioxythiophene):tosylate conductive polymer microelectrodes for transmitter detection.
    Larsen ST; Vreeland RF; Heien ML; Taboryski R
    Analyst; 2012 Apr; 137(8):1831-6. PubMed ID: 22383043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct in Vivo Electrochemical Detection of Resting Dopamine Using Poly(3,4-ethylenedioxythiophene)/Carbon Nanotube Functionalized Microelectrodes.
    Taylor IM; Patel NA; Freedman NC; Castagnola E; Cui XT
    Anal Chem; 2019 Oct; 91(20):12917-12927. PubMed ID: 31512849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile fabrication of conducting polymer hydrogels via supramolecular self-assembly.
    Dai T; Jiang X; Hua S; Wang X; Lu Y
    Chem Commun (Camb); 2008 Sep; (36):4279-81. PubMed ID: 18802543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatible PEDOT:Nafion composite electrode coatings for selective detection of neurotransmitters in vivo.
    Vreeland RF; Atcherley CW; Russell WS; Xie JY; Lu D; Laude ND; Porreca F; Heien ML
    Anal Chem; 2015 Mar; 87(5):2600-7. PubMed ID: 25692657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of a planar all-polymer transistor for characterization of barrier tissue.
    Ramuz M; Margita K; Hama A; Leleux P; Rivnay J; Bazin I; Owens RM
    Chemphyschem; 2015 Apr; 16(6):1210-6. PubMed ID: 25752503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing.
    Liu Y; Turner APF; Zhao M; Mak WC
    Biosens Bioelectron; 2018 Feb; 100():374-381. PubMed ID: 28946109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode.
    Chauhan N; Chawla S; Pundir CS; Jain U
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):377-383. PubMed ID: 27342368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully soft organic electrochemical transistor enabling direct skin-mountable electrophysiological signal amplification.
    Bontapalle S; Na M; Park H; Sim K
    Chem Commun (Camb); 2022 Jan; 58(9):1298-1301. PubMed ID: 34979536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of piezoresistive PEDOT:PSS pressure sensors with inter-digitated and cross-point electrode structures.
    Wang JC; Karmakar RS; Lu YJ; Huang CY; Wei KC
    Sensors (Basel); 2015 Jan; 15(1):818-31. PubMed ID: 25569756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.