BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21400658)

  • 1. The use of poly(L-lactide-co-caprolactone) as a scaffold for adipose stem cells in bone tissue engineering: application in a spinal fusion model.
    Vergroesen PP; Kroeze RJ; Helder MN; Smit TH
    Macromol Biosci; 2011 Jun; 11(6):722-30. PubMed ID: 21400658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid attachment of adipose stromal cells on resorbable polymeric scaffolds facilitates the one-step surgical procedure for cartilage and bone tissue engineering purposes.
    Jurgens WJ; Kroeze RJ; Bank RA; Ritt MJ; Helder MN
    J Orthop Res; 2011 Jun; 29(6):853-60. PubMed ID: 21246614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenic differentiation of two distinct subpopulations of human adipose-derived stem cells: an in vitro and in vivo study.
    Rada T; Santos TC; Marques AP; Correlo VM; Frias AM; Castro AG; Neves NM; Gomes ME; Reis RL
    J Tissue Eng Regen Med; 2012 Jan; 6(1):1-11. PubMed ID: 21294275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun poly(ester-Urethane)- and poly(ester-Urethane-Urea) fleeces as promising tissue engineering scaffolds for adipose-derived stem cells.
    Gugerell A; Kober J; Laube T; Walter T; Nürnberger S; Grönniger E; Brönneke S; Wyrwa R; Schnabelrauch M; Keck M
    PLoS One; 2014; 9(3):e90676. PubMed ID: 24594923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal fusion using adipose stem cells seeded on a radiolucent cage filler: a feasibility study of a single surgical procedure in goats.
    Kroeze RJ; Smit TH; Vergroesen PP; Bank RA; Stoop R; van Rietbergen B; van Royen BJ; Helder MN
    Eur Spine J; 2015 May; 24(5):1031-42. PubMed ID: 25421549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications.
    Santiago LY; Nowak RW; Peter Rubin J; Marra KG
    Biomaterials; 2006 May; 27(15):2962-9. PubMed ID: 16445976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of ethylene oxide, glow discharge and electron beam on the surface characteristics of poly(L-lactide-co-caprolactone) and the corresponding cellular response of adipose stem cells.
    Kroeze RJ; Helder MN; Roos WH; Wuite GJ; Bank RA; Smit TH
    Acta Biomater; 2010 Jun; 6(6):2060-5. PubMed ID: 19944190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Experimental study of adipose tissue differentiation using adipose-derived stem cells harvested from GFP transgenic mice].
    Lu F; Gao JH; Mizuro H; Ogawa R; Hyakusoku H
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2007 Sep; 23(5):412-6. PubMed ID: 18161358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone tissue engineering using human adipose-derived stem cells and honeycomb collagen scaffold.
    Kakudo N; Shimotsuma A; Miyake S; Kushida S; Kusumoto K
    J Biomed Mater Res A; 2008 Jan; 84(1):191-7. PubMed ID: 17607760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of robotic dispensed bioactive scaffolds and human adipose-derived stem cell culturing for bone tissue engineering.
    Oh CH; Hong SJ; Jeong I; Yu HS; Jegal SH; Kim HW
    Tissue Eng Part C Methods; 2010 Aug; 16(4):561-71. PubMed ID: 19722827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds.
    Gastaldi G; Asti A; Scaffino MF; Visai L; Saino E; Cometa AM; Benazzo F
    J Biomed Mater Res A; 2010 Sep; 94(3):790-9. PubMed ID: 20336739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications.
    Seyednejad H; Gawlitta D; Dhert WJ; van Nostrum CF; Vermonden T; Hennink WE
    Acta Biomater; 2011 May; 7(5):1999-2006. PubMed ID: 21241834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering.
    Rodrigues AI; Gomes ME; Leonor IB; Reis RL
    Acta Biomater; 2012 Oct; 8(10):3765-76. PubMed ID: 22659174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration.
    Akkouch A; Zhang Z; Rouabhia M
    J Biomed Mater Res A; 2011 Mar; 96(4):693-704. PubMed ID: 21284080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold.
    Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M
    Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (L-lactide-co-ε-caprolactone) scaffold.
    Akkouch A; Zhang Z; Rouabhia M
    J Biomater Appl; 2014 Feb; 28(6):922-36. PubMed ID: 23640860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models.
    Arrigoni E; Lopa S; de Girolamo L; Stanco D; Brini AT
    Cell Tissue Res; 2009 Dec; 338(3):401-11. PubMed ID: 19882172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leporine-derived adipose precursor cells exhibit in vitro osteogenic potential.
    Dudas JR; Losee JE; Penascino VM; Smith DM; Cooper GM; Mooney MP; Jiang S; Rubin JP; Marra KG
    J Craniofac Surg; 2008 Mar; 19(2):360-8. PubMed ID: 18362712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ chondrogenic differentiation of human adipose tissue-derived stem cells in a TGF-beta1 loaded fibrin-poly(lactide-caprolactone) nanoparticulate complex.
    Jung Y; Chung YI; Kim SH; Tae G; Kim YH; Rhie JW; Kim SH; Kim SH
    Biomaterials; 2009 Sep; 30(27):4657-64. PubMed ID: 19520426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.