These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 21401090)
1. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. Wang Z; Luan D; Boey FY; Lou XW J Am Chem Soc; 2011 Apr; 133(13):4738-41. PubMed ID: 21401090 [TBL] [Abstract][Full Text] [Related]
2. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage. Huang Y; Wu D; Han S; Li S; Xiao L; Zhang F; Feng X ChemSusChem; 2013 Aug; 6(8):1510-5. PubMed ID: 23784753 [TBL] [Abstract][Full Text] [Related]
3. Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries. Chen LB; Yin XM; Mei L; Li CC; Lei DN; Zhang M; Li QH; Xu Z; Xu CM; Wang TH Nanotechnology; 2012 Jan; 23(3):035402. PubMed ID: 22173372 [TBL] [Abstract][Full Text] [Related]
4. Improved lithium cyclability and storage in a multi-sized pore ("differential spacers") mesoporous SnO2. Shiva K; Asokan S; Bhattacharyya AJ Nanoscale; 2011 Apr; 3(4):1501-3. PubMed ID: 21412523 [TBL] [Abstract][Full Text] [Related]
5. Nanosize SnO₂ confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage. Zhou G; Wang DW; Li L; Li N; Li F; Cheng HM Nanoscale; 2013 Feb; 5(4):1576-82. PubMed ID: 23329149 [TBL] [Abstract][Full Text] [Related]
6. Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity. Kong J; Liu Z; Yang Z; Tan HR; Xiong S; Wong SY; Li X; Lu X Nanoscale; 2012 Jan; 4(2):525-30. PubMed ID: 22127410 [TBL] [Abstract][Full Text] [Related]
8. Porous SnO2/layered titanate nanohybrid with enhanced electrochemical performance for reversible lithium storage. Kang JH; Paek SM; Choy JH Chem Commun (Camb); 2012 Jan; 48(3):458-60. PubMed ID: 22076699 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and applications of SnO nanosheets: parallel control of oxidation state and nanostructure through an aqueous solution route. Sakaushi K; Oaki Y; Uchiyama H; Hosono E; Zhou H; Imai H Small; 2010 Mar; 6(6):776-81. PubMed ID: 20183815 [TBL] [Abstract][Full Text] [Related]
10. Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries. Wang J; Li W; Wang F; Xia Y; Asiri AM; Zhao D Nanoscale; 2014 Mar; 6(6):3217-22. PubMed ID: 24500178 [TBL] [Abstract][Full Text] [Related]
11. Cyanogel-derived formation of 3 D nanoporous SnO2-MxOy (M=Ni, Fe, Co) hybrid networks for high-performance lithium storage. Zhu Q; Wu P; Zhang J; Zhang W; Zhou Y; Tang Y; Lu T ChemSusChem; 2015 Jan; 8(1):131-7. PubMed ID: 25389036 [TBL] [Abstract][Full Text] [Related]
12. Layer-by-layer synthesis of γ-Fe2O3@SnO2@C porous core-shell nanorods with high reversible capacity in lithium-ion batteries. Du N; Chen Y; Zhai C; Zhang H; Yang D Nanoscale; 2013 Jun; 5(11):4744-50. PubMed ID: 23599163 [TBL] [Abstract][Full Text] [Related]
13. Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage. Wu P; Du N; Zhang H; Zhai C; Yang D ACS Appl Mater Interfaces; 2011 Jun; 3(6):1946-52. PubMed ID: 21539334 [TBL] [Abstract][Full Text] [Related]
14. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Wu HB; Chen JS; Hng HH; Lou XW Nanoscale; 2012 Apr; 4(8):2526-42. PubMed ID: 22460594 [TBL] [Abstract][Full Text] [Related]
15. Layer-stacked tin disulfide nanorods in silica nanoreactors with improved lithium storage capabilities. Wu P; Du N; Zhang H; Liu J; Chang L; Wang L; Yang D; Jiang JZ Nanoscale; 2012 Jul; 4(13):4002-6. PubMed ID: 22677937 [TBL] [Abstract][Full Text] [Related]
16. Porous Co3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes. Xue XY; Yuan S; Xing LL; Chen ZH; He B; Chen YJ Chem Commun (Camb); 2011 Apr; 47(16):4718-20. PubMed ID: 21412563 [TBL] [Abstract][Full Text] [Related]
17. Electrospun eggroll-like CaSnO3 nanotubes with high lithium storage performance. Li L; Peng S; Cheah YL; Wang J; Teh P; Ko Y; Wong C; Srinivasan M Nanoscale; 2013 Jan; 5(1):134-8. PubMed ID: 23147464 [TBL] [Abstract][Full Text] [Related]
18. Assembling CoSn3 nanoparticles on multiwalled carbon nanotubes with enhanced lithium storage properties. Zhai C; Du N; Zhang H; Yu J; Wu P; Xiao C; Yang D Nanoscale; 2011 Apr; 3(4):1798-801. PubMed ID: 21373652 [TBL] [Abstract][Full Text] [Related]
19. Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries. Wu P; Du N; Zhang H; Yu J; Qi Y; Yang D Nanoscale; 2011 Feb; 3(2):746-50. PubMed ID: 21113552 [TBL] [Abstract][Full Text] [Related]
20. Polyvinylpyrrolidone-assisted ultrasonic synthesis of SnO nanosheets and their use as conformal templates for tin dioxide nanostructures. Wang H; Wang Y; Xu J; Yang H; Lee CS; Rogach AL Langmuir; 2012 Jul; 28(28):10597-601. PubMed ID: 22746149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]