These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 21401124)
1. Direct observation of the structural change of Tyr174 in the primary reaction of sensory rhodopsin II. Mizuno M; Sudo Y; Homma M; Mizutani Y Biochemistry; 2011 Apr; 50(15):3170-80. PubMed ID: 21401124 [TBL] [Abstract][Full Text] [Related]
2. Picosecond time-resolved ultraviolet resonance Raman spectroscopy of bacteriorhodopsin: primary protein response to the photoisomerization of retinal. Mizuno M; Shibata M; Yamada J; Kandori H; Mizutani Y J Phys Chem B; 2009 Sep; 113(35):12121-8. PubMed ID: 19678662 [TBL] [Abstract][Full Text] [Related]
3. Functional importance of the interhelical hydrogen bond between Thr204 and Tyr174 of sensory rhodopsin II and its alteration during the signaling process. Sudo Y; Furutani Y; Kandori H; Spudich JL J Biol Chem; 2006 Nov; 281(45):34239-45. PubMed ID: 16968701 [TBL] [Abstract][Full Text] [Related]
4. Primary reaction of sensory rhodopsin II mutant D75N and the influence of azide. Verhoefen MK; Lenz MO; Amarie S; Klare JP; Tittor J; Oesterhelt D; Engelhard M; Wachtveitl J Biochemistry; 2009 Oct; 48(40):9677-83. PubMed ID: 19739678 [TBL] [Abstract][Full Text] [Related]
5. Structural changes of sensory rhodopsin I and its transducer protein are dependent on the protonated state of Asp76. Furutani Y; Takahashi H; Sasaki J; Sudo Y; Spudich JL; Kandori H Biochemistry; 2008 Mar; 47(9):2875-83. PubMed ID: 18220358 [TBL] [Abstract][Full Text] [Related]
6. Key determinants for signaling in the sensory rhodopsin II/transducer complex are different between Halobacterium salinarum and Natronomonas pharaonis. Matsunami-Nakamura R; Tamogami J; Takeguchi M; Ishikawa J; Kikukawa T; Kamo N; Nara T FEBS Lett; 2023 Sep; 597(18):2334-2344. PubMed ID: 37532685 [TBL] [Abstract][Full Text] [Related]
7. Structural changes in the O-decay accelerated mutants of pharaonis phoborhodopsin. Sudo Y; Furutani Y; Iwamoto M; Kamo N; Kandori H Biochemistry; 2008 Mar; 47(9):2866-74. PubMed ID: 18247579 [TBL] [Abstract][Full Text] [Related]
8. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Moukhametzianov R; Klare JP; Efremov R; Baeken C; Göppner A; Labahn J; Engelhard M; Büldt G; Gordeliy VI Nature; 2006 Mar; 440(7080):115-9. PubMed ID: 16452929 [TBL] [Abstract][Full Text] [Related]
9. Assignment of the hydrogen-out-of-plane and -in-plane vibrations of the retinal chromophore in the K intermediate of pharaonis phoborhodopsin. Furutani Y; Sudo Y; Wada A; Ito M; Shimono K; Kamo N; Kandori H Biochemistry; 2006 Oct; 45(39):11836-43. PubMed ID: 17002284 [TBL] [Abstract][Full Text] [Related]
10. Picosecond protein response to the chromophore isomerization of photoactive yellow protein: selective observation of tyrosine and tryptophan residues by time-resolved ultraviolet resonance Raman spectroscopy. Mizuno M; Hamada N; Tokunaga F; Mizutani Y J Phys Chem B; 2007 Jun; 111(23):6293-6. PubMed ID: 17523627 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic evidence for the formation of an N intermediate during the photocycle of sensory rhodopsin II (phoborhodopsin) from Natronobacterium pharaonis. Tateishi Y; Abe T; Tamogami J; Nakao Y; Kikukawa T; Kamo N; Unno M Biochemistry; 2011 Mar; 50(12):2135-43. PubMed ID: 21299224 [TBL] [Abstract][Full Text] [Related]
12. Single-molecule force spectroscopy measures structural changes induced by light activation and transducer binding in sensory rhodopsin II. Oberbarnscheidt L; Janissen R; Martell S; Engelhard M; Oesterhelt F J Mol Biol; 2009 Dec; 394(3):383-90. PubMed ID: 19651144 [TBL] [Abstract][Full Text] [Related]
13. Signal relay from sensory rhodopsin I to the cognate transducer HtrI: assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53. Radu I; Budyak IL; Hoomann T; Kim YJ; Engelhard M; Labahn J; Büldt G; Heberle J; Schlesinger R Biophys Chem; 2010 Aug; 150(1-3):23-8. PubMed ID: 20303644 [TBL] [Abstract][Full Text] [Related]
14. Transducer binding establishes localized interactions to tune sensory rhodopsin II. Cisneros DA; Oberbarnscheidt L; Pannier A; Klare JP; Helenius J; Engelhard M; Oesterhelt F; Muller DJ Structure; 2008 Aug; 16(8):1206-13. PubMed ID: 18682222 [TBL] [Abstract][Full Text] [Related]
15. A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å. Spudich EN; Ozorowski G; Schow EV; Tobias DJ; Spudich JL; Luecke H J Mol Biol; 2012 Jan; 415(3):455-63. PubMed ID: 22123198 [TBL] [Abstract][Full Text] [Related]
16. Structural changes of Salinibacter sensory rhodopsin I upon formation of the K and M photointermediates. Suzuki D; Sudo Y; Furutani Y; Takahashi H; Homma M; Kandori H Biochemistry; 2008 Dec; 47(48):12750-9. PubMed ID: 18991393 [TBL] [Abstract][Full Text] [Related]
17. The early steps in the photocycle of a photosensor protein sensory rhodopsin I from Salinibacter ruber. Sudo Y; Mizuno M; Wei Z; Takeuchi S; Tahara T; Mizutani Y J Phys Chem B; 2014 Feb; 118(6):1510-8. PubMed ID: 24447185 [TBL] [Abstract][Full Text] [Related]
18. Complex formation and light activation in membrane-embedded sensory rhodopsin II as seen by solid-state NMR spectroscopy. Etzkorn M; Seidel K; Li L; Martell S; Geyer M; Engelhard M; Baldus M Structure; 2010 Mar; 18(3):293-300. PubMed ID: 20223212 [TBL] [Abstract][Full Text] [Related]
19. Primary photoinduced protein response in bacteriorhodopsin and sensory rhodopsin II. Gross R; Wolf MM; Schumann C; Friedman N; Sheves M; Li L; Engelhard M; Trentmann O; Neuhaus HE; Diller R J Am Chem Soc; 2009 Oct; 131(41):14868-78. PubMed ID: 19778046 [TBL] [Abstract][Full Text] [Related]
20. FT-IR difference spectroscopy elucidates crucial interactions of sensory rhodopsin I with the cognate transducer HtrI. Mironova OS; Budyak IL; Büldt G; Schlesinger R; Heberle J Biochemistry; 2007 Aug; 46(33):9399-405. PubMed ID: 17655327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]