BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 21401497)

  • 1. The role of extracellular adenosine in chemical neurotransmission in the hippocampus and Basal Ganglia: pharmacological and clinical aspects.
    Sperlágh B; Vizi ES
    Curr Top Med Chem; 2011; 11(8):1034-46. PubMed ID: 21401497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine and ATP receptors in the brain.
    Burnstock G; Fredholm BB; Verkhratsky A
    Curr Top Med Chem; 2011; 11(8):973-1011. PubMed ID: 21401499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine A(2A) receptor facilitation of hippocampal synaptic transmission is dependent on tonic A(1) receptor inhibition.
    Lopes LV; Cunha RA; Kull B; Fredholm BB; Ribeiro JA
    Neuroscience; 2002; 112(2):319-29. PubMed ID: 12044450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of adenosine in the regulation of sleep.
    Huang ZL; Urade Y; Hayaishi O
    Curr Top Med Chem; 2011; 11(8):1047-57. PubMed ID: 21401496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine and related drugs in brain diseases: present and future in clinical trials.
    Lopes LV; Sebastião AM; Ribeiro JA
    Curr Top Med Chem; 2011; 11(8):1087-101. PubMed ID: 21401493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABA release modified by adenosine receptors in mouse hippocampal slices under normal and ischemic conditions.
    Saransaari P; Oja SS
    Neurochem Res; 2005 Apr; 30(4):467-73. PubMed ID: 16076017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A(2A) and dopamine D(2) receptors.
    Díaz-Cabiale Z; Vivó M; Del Arco A; O'Connor WT; Harte MK; Müller CE; Martínez E; Popoli P; Fuxe K; Ferré S
    Neurosci Lett; 2002 May; 324(2):154-8. PubMed ID: 11988350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New aspects of physiological and pathophysiological functions of adenosine A2A receptor in basal ganglia.
    Kase H
    Biosci Biotechnol Biochem; 2001 Jul; 65(7):1447-57. PubMed ID: 11515525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP and glutamate are released from separate neurones in the rat medial habenula nucleus: frequency dependence and adenosine-mediated inhibition of release.
    Robertson SJ; Edwards FA
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):691-701. PubMed ID: 9518726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential desensitization of responses mediated by presynaptic and postsynaptic A1 adenosine receptors.
    Wetherington JP; Lambert NA
    J Neurosci; 2002 Feb; 22(4):1248-55. PubMed ID: 11850452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine A1 receptors control dopamine D1-dependent [(3)H]GABA release in slices of substantia nigra pars reticulata and motor behavior in the rat.
    Florán B; Barajas C; Florán L; Erlij D; Aceves J
    Neuroscience; 2002; 115(3):743-51. PubMed ID: 12435413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decrease of adenosine A1 receptor density and of adenosine neuromodulation in the hippocampus of kindled rats.
    Rebola N; Coelho JE; Costenla AR; Lopes LV; Parada A; Oliveira CR; Soares-da-Silva P; de Mendonça A; Cunha RA
    Eur J Neurosci; 2003 Aug; 18(4):820-8. PubMed ID: 12925008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of endogenous GABA release by an antagonistic adenosine A1/dopamineD1 receptor interaction in rat brain limbic regions but not basal ganglia.
    Mayfield RD; Jones BA; Miller HA; Simosky JK; Larson GA; Zahniser NR
    Synapse; 1999 Sep; 33(4):274-81. PubMed ID: 10421708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purinergic signalling in brain ischemia.
    Pedata F; Dettori I; Coppi E; Melani A; Fusco I; Corradetti R; Pugliese AM
    Neuropharmacology; 2016 May; 104():105-30. PubMed ID: 26581499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased astrocytic ATP release results in enhanced excitability of the hippocampus.
    Lee HU; Yamazaki Y; Tanaka KF; Furuya K; Sokabe M; Hida H; Takao K; Miyakawa T; Fujii S; Ikenaka K
    Glia; 2013 Feb; 61(2):210-24. PubMed ID: 23018918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glial cell inhibition of neurons by release of ATP.
    Newman EA
    J Neurosci; 2003 Mar; 23(5):1659-66. PubMed ID: 12629170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-D-aspartate receptor stimulation.
    Quarta D; Borycz J; Solinas M; Patkar K; Hockemeyer J; Ciruela F; Lluis C; Franco R; Woods AS; Goldberg SR; Ferré S
    J Neurochem; 2004 Nov; 91(4):873-80. PubMed ID: 15525341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Astrocytic purinergic signaling coordinates synaptic networks.
    Pascual O; Casper KB; Kubera C; Zhang J; Revilla-Sanchez R; Sul JY; Takano H; Moss SJ; McCarthy K; Haydon PG
    Science; 2005 Oct; 310(5745):113-6. PubMed ID: 16210541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trophic effects of purines in neurons and glial cells.
    Rathbone MP; Middlemiss PJ; Gysbers JW; Andrew C; Herman MA; Reed JK; Ciccarelli R; Di Iorio P; Caciagli F
    Prog Neurobiol; 1999 Dec; 59(6):663-90. PubMed ID: 10845757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation by adenosine of both muscarinic M1-facilitation and M2-inhibition of [3H]-acetylcholine release from the rat motor nerve terminals.
    Oliveira L; Timóteo MA; Correia-de-Sá P
    Eur J Neurosci; 2002 Jun; 15(11):1728-36. PubMed ID: 12081652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.