These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 21401617)

  • 1. How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms?
    Ennajeh M; Simões F; Khemira H; Cochard H
    Physiol Plant; 2011 Jul; 142(3):205-10. PubMed ID: 21401617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does sample length influence the shape of xylem embolism vulnerability curves? A test with the Cavitron spinning technique.
    Cochard H; Herbette S; Barigah T; Badel E; Ennajeh M; Vilagrosa A
    Plant Cell Environ; 2010 Sep; 33(9):1543-52. PubMed ID: 20444214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root resistance to cavitation is accurately measured using a centrifuge technique.
    Pratt RB; MacKinnon ED; Venturas MD; Crous CJ; Jacobsen AL
    Tree Physiol; 2015 Feb; 35(2):185-96. PubMed ID: 25716876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for measuring plant vulnerability to cavitation: a critical review.
    Cochard H; Badel E; Herbette S; Delzon S; Choat B; Jansen S
    J Exp Bot; 2013 Nov; 64(15):4779-91. PubMed ID: 23888067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single vessel air injection estimates of xylem resistance to cavitation are affected by vessel network characteristics and sample length.
    Venturas MD; Rodriguez-Zaccaro FD; Percolla MI; Crous CJ; Jacobsen AL; Pratt RB
    Tree Physiol; 2016 Oct; 36(10):1247-1259. PubMed ID: 27358206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method.
    Tobin MF; Pratt RB; Jacobsen AL; De Guzman ME
    Plant Biol (Stuttg); 2013 May; 15(3):496-504. PubMed ID: 23127246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What causes the differences in cavitation resistance of two shrubs? Wood anatomical explanations and reliability testing of vulnerability curves.
    Zhao H; Jiang Z; Ma J; Cai J
    Physiol Plant; 2020 Jun; 169(2):156-168. PubMed ID: 31828790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A global analysis of xylem vessel length in woody plants.
    Jacobsen AL; Pratt RB; Tobin MF; Hacke UG; Ewers FW
    Am J Bot; 2012 Oct; 99(10):1583-91. PubMed ID: 22965850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vulnerability to cavitation differs between current-year and older xylem: non-destructive observation with a compact magnetic resonance imaging system of two deciduous diffuse-porous species.
    Fukuda K; Kawaguchi D; Aihara T; Ogasa MY; Miki NH; Haishi T; Umebayashi T
    Plant Cell Environ; 2015 Dec; 38(12):2508-18. PubMed ID: 25630712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate and growth form: the consequences for genome size in plants.
    Ohri D
    Plant Biol (Stuttg); 2005 Sep; 7(5):449-58. PubMed ID: 16163609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying vulnerability to embolism in tropical trees and lianas using five methods: can discrepancies be explained by xylem structural traits?
    Chen YJ; Maenpuen P; Zhang YJ; Barai K; Katabuchi M; Gao H; Kaewkamol S; Tao LB; Zhang JL
    New Phytol; 2021 Jan; 229(2):805-819. PubMed ID: 32929748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes of hydraulic conductivity during dehydration and rehydration in Quercus serrata Thunb. and Betula platyphylla var. japonica Hara: the effect of xylem structures.
    Ogasa M; Miki N; Yoshikawa K
    Tree Physiol; 2010 May; 30(5):608-17. PubMed ID: 20368339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Velocity and pattern of ice propagation and deep supercooling in woody stems of Castanea sativa, Morus nigra and Quercus robur measured by IDTA.
    Neuner G; Xu B; Hacker J
    Tree Physiol; 2010 Aug; 30(8):1037-45. PubMed ID: 20616300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees.
    Bush SE; Hultine KR; Sperry JS; Ehleringer JR
    Tree Physiol; 2010 Dec; 30(12):1545-54. PubMed ID: 21112973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of two centrifuge techniques for constructing vulnerability curves: insight into the 'open-vessel' artifact.
    Yin P; Meng F; Liu Q; An R; Cai J; Du G
    Physiol Plant; 2019 Apr; 165(4):701-710. PubMed ID: 29602179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx.
    Cai J; Tyree MT
    Plant Cell Environ; 2010 Jul; 33(7):1059-69. PubMed ID: 20199629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wood anatomical analysis of Alnus incana and Betula pendula injured by a debris-flow event.
    Arbellay E; Stoffel M; Bollschweiler M
    Tree Physiol; 2010 Oct; 30(10):1290-8. PubMed ID: 20639516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New possible mechanisms of embolism formation when measuring vulnerability curves by air injection in a pressure sleeve.
    Yin P; Cai J
    Plant Cell Environ; 2018 Jun; 41(6):1361-1368. PubMed ID: 29424925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential of Mid-Infrared spectroscopy for prediction of wood density and vulnerability to embolism in woody angiosperms.
    Savi T; Tintner J; Da Sois L; Grabner M; Petit G; Rosner S
    Tree Physiol; 2019 Mar; 39(3):503-510. PubMed ID: 30307571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wood formation in Angiosperms.
    Déjardin A; Laurans F; Arnaud D; Breton C; Pilate G; Leplé JC
    C R Biol; 2010 Apr; 333(4):325-34. PubMed ID: 20371107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.