These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 21401935)

  • 1. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels.
    Rismani-Yazdi H; Haznedaroglu BZ; Bibby K; Peccia J
    BMC Genomics; 2011 Mar; 12():148. PubMed ID: 21401935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels.
    Wan L; Han J; Sang M; Li A; Wu H; Yin S; Zhang C
    PLoS One; 2012; 7(4):e35142. PubMed ID: 22536352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-crude transcriptomics: gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa).
    Molnár I; Lopez D; Wisecaver JH; Devarenne TP; Weiss TL; Pellegrini M; Hackett JD
    BMC Genomics; 2012 Oct; 13():576. PubMed ID: 23110428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-Seq transcriptomic analysis with Bag2D software identifies key pathways enhancing lipid yield in a high lipid-producing mutant of the non-model green alga Dunaliella tertiolecta.
    Yao L; Tan TW; Ng YK; Ban KH; Shen H; Lin H; Lee YK
    Biotechnol Biofuels; 2015; 8():191. PubMed ID: 26613001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the transcriptome of non-model oleaginous microalga Dunaliella tertiolecta through high-throughput sequencing and high performance computing.
    Yao L; Tan KW; Tan TW; Lee YK
    BMC Bioinformatics; 2017 Feb; 18(1):122. PubMed ID: 28228091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis.
    Shin H; Hong SJ; Kim H; Yoo C; Lee H; Choi HK; Lee CG; Cho BK
    Bioresour Technol; 2015 Oct; 194():57-66. PubMed ID: 26185926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analysis of yellow horn (Xanthoceras sorbifolia Bunge): a potential oil-rich seed tree for biodiesel in China.
    Liu Y; Huang Z; Ao Y; Li W; Zhang Z
    PLoS One; 2013; 8(9):e74441. PubMed ID: 24040247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production.
    Bogen C; Al-Dilaimi A; Albersmeier A; Wichmann J; Grundmann M; Rupp O; Lauersen KJ; Blifernez-Klassen O; Kalinowski J; Goesmann A; Mussgnug JH; Kruse O
    BMC Genomics; 2013 Dec; 14():926. PubMed ID: 24373495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the Triacylglycerol Content in Dunaliella tertiolecta through Isolation of Starch-Deficient Mutants.
    Sirikhachornkit A; Vuttipongchaikij S; Suttangkakul A; Yokthongwattana K; Juntawong P; Pokethitiyook P; Kangvansaichol K; Meetam M
    J Microbiol Biotechnol; 2016 May; 26(5):854-66. PubMed ID: 26869603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions.
    Cecchin M; Marcolungo L; Rossato M; Girolomoni L; Cosentino E; Cuine S; Li-Beisson Y; Delledonne M; Ballottari M
    Plant J; 2019 Dec; 100(6):1289-1305. PubMed ID: 31437318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo transcriptome analysis of the Siberian apricot (Prunus sibirica L.) and search for potential SSR markers by 454 pyrosequencing.
    Dong S; Liu Y; Niu J; Ning Y; Lin S; Zhang Z
    Gene; 2014 Jul; 544(2):220-7. PubMed ID: 24746601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds.
    Shi CY; Yang H; Wei CL; Yu O; Zhang ZZ; Jiang CJ; Sun J; Li YY; Chen Q; Xia T; Wan XC
    BMC Genomics; 2011 Feb; 12():131. PubMed ID: 21356090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo transcriptome analysis of an aerial microalga Trentepohlia jolithus: pathway description and gene discovery for carbon fixation and carotenoid biosynthesis.
    Li Q; Liu J; Zhang L; Liu Q
    PLoS One; 2014; 9(9):e108488. PubMed ID: 25254555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [In silico Analyses of Transcriptomes of the Marine Green Microalga Dunaliella tertiolecta: Identification of Sequences Encoding P-type ATPases].
    Popova LG; Belyaev DV; Shuvalov AV; Yurchenko AA; Matalin DA; Khramov DE; Orlova YV; Balnokin YV
    Mol Biol (Mosk); 2018; 52(4):601-615. PubMed ID: 30113026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biodiesel from microalgae: ways of increasing effectiveness of lipids accumulation by genetic engineering methods].
    Korkhovoĭ VI; Blium IaB
    Tsitol Genet; 2013; 47(6):30-42. PubMed ID: 24437196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae as a raw material for biofuels production.
    Gouveia L; Oliveira AC
    J Ind Microbiol Biotechnol; 2009 Feb; 36(2):269-74. PubMed ID: 18982369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis reveals unique C4-like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301.
    Ouyang LL; Chen SH; Li Y; Zhou ZG
    BMC Genomics; 2013 Jun; 14():396. PubMed ID: 23759028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Oncidium 'Gower Ramsey' transcriptomes using 454 GS-FLX pyrosequencing and their application to the identification of genes associated with flowering time.
    Chang YY; Chu YW; Chen CW; Leu WM; Hsu HF; Yang CH
    Plant Cell Physiol; 2011 Sep; 52(9):1532-45. PubMed ID: 21785129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for L-ascorbic acid biosynthesis.
    Castro JC; Maddox JD; Cobos M; Requena D; Zimic M; Bombarely A; Imán SA; Cerdeira LA; Medina AE
    BMC Genomics; 2015 Nov; 16():997. PubMed ID: 26602763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo transcriptome assembly of the wild relative of tea tree (Camellia taliensis) and comparative analysis with tea transcriptome identified putative genes associated with tea quality and stress response.
    Zhang HB; Xia EH; Huang H; Jiang JJ; Liu BY; Gao LZ
    BMC Genomics; 2015 Apr; 16(1):298. PubMed ID: 25881092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.