These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 21402023)

  • 21. Weak force stalls protrusion at the leading edge of the lamellipodium.
    Bohnet S; Ananthakrishnan R; Mogilner A; Meister JJ; Verkhovsky AB
    Biophys J; 2006 Mar; 90(5):1810-20. PubMed ID: 16326894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical properties of branched actin filaments.
    Razbin M; Falcke M; Benetatos P; Zippelius A
    Phys Biol; 2015 Jun; 12(4):046007. PubMed ID: 26040560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Actin filament elasticity and retrograde flow shape the force-velocity relation of motile cells.
    Zimmermann J; Brunner C; Enculescu M; Goegler M; Ehrlicher A; Käs J; Falcke M
    Biophys J; 2012 Jan; 102(2):287-95. PubMed ID: 22339865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Abl-related gene (Arg) requires its F-actin-microtubule cross-linking activity to regulate lamellipodial dynamics during fibroblast adhesion.
    Miller AL; Wang Y; Mooseker MS; Koleske AJ
    J Cell Biol; 2004 May; 165(3):407-19. PubMed ID: 15138293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of actin and cell surface dynamics in motile fibroblasts.
    Theriot JA; Mitchison TJ
    J Cell Biol; 1992 Oct; 119(2):367-77. PubMed ID: 1400580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lamellipodial actin mechanically links myosin activity with adhesion-site formation.
    Giannone G; Dubin-Thaler BJ; Rossier O; Cai Y; Chaga O; Jiang G; Beaver W; Döbereiner HG; Freund Y; Borisy G; Sheetz MP
    Cell; 2007 Feb; 128(3):561-75. PubMed ID: 17289574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reorganization of the actin cytoskeleton in the protruding lamellae of human fibroblasts.
    Safiejko-Mroczka B; Bell PB
    Cell Motil Cytoskeleton; 2001 Sep; 50(1):13-32. PubMed ID: 11746669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficiency of lamellipodia protrusion is determined by the extent of cytosolic actin assembly.
    Dimchev G; Steffen A; Kage F; Dimchev V; Pernier J; Carlier MF; Rottner K
    Mol Biol Cell; 2017 May; 28(10):1311-1325. PubMed ID: 28331069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assembling actin filaments for protrusion.
    Rottner K; Schaks M
    Curr Opin Cell Biol; 2019 Feb; 56():53-63. PubMed ID: 30278304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of actin assembly associated with protrusion and adhesion in cell migration.
    Le Clainche C; Carlier MF
    Physiol Rev; 2008 Apr; 88(2):489-513. PubMed ID: 18391171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front.
    Koestler SA; Auinger S; Vinzenz M; Rottner K; Small JV
    Nat Cell Biol; 2008 Mar; 10(3):306-13. PubMed ID: 18278037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gradient of rigidity in the lamellipodia of migrating cells revealed by atomic force microscopy.
    Laurent VM; Kasas S; Yersin A; Schäffer TE; Catsicas S; Dietler G; Verkhovsky AB; Meister JJ
    Biophys J; 2005 Jul; 89(1):667-75. PubMed ID: 15849253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Branching influences force-velocity curves and length fluctuations in actin networks.
    Hansda DK; Sen S; Padinhateeri R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062718. PubMed ID: 25615140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel function of WAVE in lamellipodia: WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading.
    Yamazaki D; Fujiwara T; Suetsugu S; Takenawa T
    Genes Cells; 2005 May; 10(5):381-92. PubMed ID: 15836768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling of the actin-cytoskeleton in symmetric lamellipodial fragments.
    Oelz D; Schmeiser C; Small JV
    Cell Adh Migr; 2008; 2(2):117-26. PubMed ID: 19271354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Directional Transport of a Bead Bound to Lamellipodial Surface Is Driven by Actin Polymerization.
    Nobezawa D; Ikeda SI; Wada E; Nagano T; Miyata H
    Biomed Res Int; 2017; 2017():7804251. PubMed ID: 28246604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excitable actin dynamics in lamellipodial protrusion and retraction.
    Ryan GL; Petroccia HM; Watanabe N; Vavylonis D
    Biophys J; 2012 Apr; 102(7):1493-502. PubMed ID: 22500749
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Actin-myosin viscoelastic flow in the keratocyte lamellipod.
    Rubinstein B; Fournier MF; Jacobson K; Verkhovsky AB; Mogilner A
    Biophys J; 2009 Oct; 97(7):1853-63. PubMed ID: 19804715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Actin and cell movement.
    Small JV; Rohlfs A; Herzog M
    Symp Soc Exp Biol; 1993; 47():57-71. PubMed ID: 8165579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Steady-state force-velocity relation in the ATP-dependent sliding movement of myosin-coated beads on actin cables in vitro studied with a centrifuge microscope.
    Oiwa K; Chaen S; Kamitsubo E; Shimmen T; Sugi H
    Proc Natl Acad Sci U S A; 1990 Oct; 87(20):7893-7. PubMed ID: 2236007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.