These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21402028)

  • 1. Analysis of molecular diffusion by first-passage time variance identifies the size of confinement zones.
    Rajani V; Carrero G; Golan DE; de Vries G; Cairo CW
    Biophys J; 2011 Mar; 100(6):1463-72. PubMed ID: 21402028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time series analysis of particle tracking data for molecular motion on the cell membrane.
    Ying W; Huerta G; Steinberg S; Zúñiga M
    Bull Math Biol; 2009 Nov; 71(8):1967-2024. PubMed ID: 19657701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic detection of diffusion modes within biological membranes using back-propagation neural network.
    Dosset P; Rassam P; Fernandez L; Espenel C; Rubinstein E; Margeat E; Milhiet PE
    BMC Bioinformatics; 2016 May; 17(1):197. PubMed ID: 27141816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells.
    Kusumi A; Sako Y; Yamamoto M
    Biophys J; 1993 Nov; 65(5):2021-40. PubMed ID: 8298032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Diffusion Heterogeneity in Single Particle Tracking Trajectories Using a Hidden Markov Model with Measurement Noise Propagation.
    Slator PJ; Cairo CW; Burroughs NJ
    PLoS One; 2015; 10(10):e0140759. PubMed ID: 26473352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hidden Markov Model for Detecting Confinement in Single-Particle Tracking Trajectories.
    Slator PJ; Burroughs NJ
    Biophys J; 2018 Nov; 115(9):1741-1754. PubMed ID: 30274829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes.
    Kucik DF; Dustin ML; Miller JM; Brown EJ
    J Clin Invest; 1996 May; 97(9):2139-44. PubMed ID: 8621804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural mosaicism on the submicron scale in the plasma membrane.
    Simson R; Yang B; Moore SE; Doherty P; Walsh FS; Jacobson KA
    Biophys J; 1998 Jan; 74(1):297-308. PubMed ID: 9449330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of alpha3 GlyR single particle tracking in the cell membrane.
    Notelaers K; Rocha S; Paesen R; Smisdom N; De Clercq B; Meier JC; Rigo JM; Hofkens J; Ameloot M
    Biochim Biophys Acta; 2014 Mar; 1843(3):544-53. PubMed ID: 24316136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interprotein interactions are responsible for the confined diffusion of a G-protein-coupled receptor at the cell surface.
    Daumas F; Destainville N; Millot C; Lopez A; Dean D; Salomé L
    Biochem Soc Trans; 2003 Oct; 31(Pt 5):1001-5. PubMed ID: 14505468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPT and Imaging FCS Provide Complementary Information on the Dynamics of Plasma Membrane Molecules.
    Harwardt MIE; Dietz MS; Heilemann M; Wohland T
    Biophys J; 2018 May; 114(10):2432-2443. PubMed ID: 29650369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-passage times in complex scale-invariant media.
    Condamin S; Bénichou O; Tejedor V; Voituriez R; Klafter J
    Nature; 2007 Nov; 450(7166):77-80. PubMed ID: 17972880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion analysis of single particle trajectories in a Bayesian nonparametrics framework.
    Falcao RC; Coombs D
    Phys Biol; 2020 Feb; 17(2):025001. PubMed ID: 31860874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton.
    Das R; Cairo CW; Coombs D
    PLoS Comput Biol; 2009 Nov; 5(11):e1000556. PubMed ID: 19893741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Simple and Powerful Analysis of Lateral Subdiffusion Using Single Particle Tracking.
    Renner M; Wang L; Levi S; Hennekinne L; Triller A
    Biophys J; 2017 Dec; 113(11):2452-2463. PubMed ID: 29211999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms underlying anomalous diffusion in the plasma membrane.
    Krapf D
    Curr Top Membr; 2015; 75():167-207. PubMed ID: 26015283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput, single-particle tracking reveals nested membrane domains that dictate KRas
    Lee Y; Phelps C; Huang T; Mostofian B; Wu L; Zhang Y; Tao K; Chang YH; Stork PJ; Gray JW; Zuckerman DM; Nan X
    Elife; 2019 Nov; 8():. PubMed ID: 31674905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping molecular diffusion in the plasma membrane by Multiple-Target Tracing (MTT).
    Rouger V; Bertaux N; Trombik T; Mailfert S; Billaudeau C; Marguet D; Sergé A
    J Vis Exp; 2012 May; (63):e3599. PubMed ID: 22664619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of non-Brownian diffusion in the cell membrane in single molecule tracking.
    Ritchie K; Shan XY; Kondo J; Iwasawa K; Fujiwara T; Kusumi A
    Biophys J; 2005 Mar; 88(3):2266-77. PubMed ID: 15613635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.