BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21402089)

  • 1. Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis.
    Penhoat A; Mutel E; Amigo-Correig M; Pillot B; Stefanutti A; Rajas F; Mithieux G
    Physiol Behav; 2011 Nov; 105(1):89-93. PubMed ID: 21402089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein.
    Mithieux G; Misery P; Magnan C; Pillot B; Gautier-Stein A; Bernard C; Rajas F; Zitoun C
    Cell Metab; 2005 Nov; 2(5):321-9. PubMed ID: 16271532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake.
    Duraffourd C; De Vadder F; Goncalves D; Delaere F; Penhoat A; Brusset B; Rajas F; Chassard D; Duchampt A; Stefanutti A; Gautier-Stein A; Mithieux G
    Cell; 2012 Jul; 150(2):377-88. PubMed ID: 22771138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity.
    Delaere F; Magnan C; Mithieux G
    Diabetes Metab; 2010 Sep; 36(4):257-62. PubMed ID: 20561808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal gluconeogenesis is crucial to maintain a physiological fasting glycemia in the absence of hepatic glucose production in mice.
    Penhoat A; Fayard L; Stefanutti A; Mithieux G; Rajas F
    Metabolism; 2014 Jan; 63(1):104-11. PubMed ID: 24135501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Glucose sensing: from gut to brain].
    Mithieux G
    Bull Acad Natl Med; 2007; 191(4-5):911-20; discussion 920-1. PubMed ID: 18225445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal glucose metabolism revisited.
    Mithieux G; Gautier-Stein A
    Diabetes Res Clin Pract; 2014 Sep; 105(3):295-301. PubMed ID: 24969963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel function of intestinal gluconeogenesis: central signaling in glucose and energy homeostasis.
    Mithieux G
    Nutrition; 2009 Sep; 25(9):881-4. PubMed ID: 19647621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis.
    Mithieux G; Andreelli F; Magnan C
    Curr Opin Clin Nutr Metab Care; 2009 Jul; 12(4):419-23. PubMed ID: 19474723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-carbohydrate diet disrupts the association between insulin resistance and weight gain.
    Leite JO; DeOgburn R; Ratliff JC; Su R; Volek JS; McGrane MM; Dardik A; Fernandez ML
    Metabolism; 2009 Aug; 58(8):1116-22. PubMed ID: 19439329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic effects of portal vein sensing.
    Mithieux G
    Diabetes Obes Metab; 2014 Sep; 16 Suppl 1():56-60. PubMed ID: 25200297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal gluconeogenesis and protein diet: future directions.
    Gautier-Stein A; Rajas F; Mithieux G
    Proc Nutr Soc; 2021 May; 80(2):118-125. PubMed ID: 33190653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Nutrient sensing by the gastro-intestinal nervous system and control of energy homeostasis].
    Gilles M
    Biol Aujourdhui; 2015; 209(4):325-30. PubMed ID: 27021051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein intake and energy balance.
    Westerterp-Plantenga MS
    Regul Pept; 2008 Aug; 149(1-3):67-9. PubMed ID: 18448177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice.
    Troy S; Soty M; Ribeiro L; Laval L; Migrenne S; Fioramonti X; Pillot B; Fauveau V; Aubert R; Viollet B; Foretz M; Leclerc J; Duchampt A; Zitoun C; Thorens B; Magnan C; Mithieux G; Andreelli F
    Cell Metab; 2008 Sep; 8(3):201-11. PubMed ID: 18762021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutropioids regulate gut-brain circuitry controlling food intake.
    Mithieux G
    Front Horm Res; 2014; 42():155-62. PubMed ID: 24732933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review article: The gastrointestinal tract: neuroendocrine regulation of satiety and food intake.
    Maljaars J; Peters HP; Masclee AM
    Aliment Pharmacol Ther; 2007 Dec; 26 Suppl 2():241-50. PubMed ID: 18081667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Opioid receptors associated with portal vein regulate a gut-brain neural circuitry limiting food intake].
    De Vadder F; Gautier-Stein A; Mithieux G
    Med Sci (Paris); 2013 Jan; 29(1):31-3. PubMed ID: 23351691
    [No Abstract]   [Full Text] [Related]  

  • 19. Bitter taste and blood glucose are not involved in the suppressive effect of dietary histidine on food intake.
    Goto K; Kasaoka S; Takizawa M; Ogawa M; Tsuchiya T; Nakajima S
    Neurosci Lett; 2007 Jun; 420(2):106-9. PubMed ID: 17531387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Board Invited Review: The hepatic oxidation theory of the control of feed intake and its application to ruminants.
    Allen MS; Bradford BJ; Oba M
    J Anim Sci; 2009 Oct; 87(10):3317-34. PubMed ID: 19648500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.