These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 21402182)
41. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior. Shao H; Yang X; He Y; Fu J; Liu L; Ma L; Zhang L; Yang G; Gao C; Gou Z Biofabrication; 2015 Sep; 7(3):035010. PubMed ID: 26355654 [TBL] [Abstract][Full Text] [Related]
42. Review of bioactive glass: from Hench to hybrids. Jones JR Acta Biomater; 2013 Jan; 9(1):4457-86. PubMed ID: 22922331 [TBL] [Abstract][Full Text] [Related]
43. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
44. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration. Zhang X; Zeng D; Li N; Wen J; Jiang X; Liu C; Li Y Sci Rep; 2016 Jan; 6():19361. PubMed ID: 26763311 [TBL] [Abstract][Full Text] [Related]
45. Europium-Containing Mesoporous Bioactive Glass Scaffolds for Stimulating in Vitro and in Vivo Osteogenesis. Wu C; Xia L; Han P; Mao L; Wang J; Zhai D; Fang B; Chang J; Xiao Y ACS Appl Mater Interfaces; 2016 May; 8(18):11342-54. PubMed ID: 27096527 [TBL] [Abstract][Full Text] [Related]
46. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering. Meretoja VV; Helminen AO; Korventausta JJ; Haapa-aho V; Seppälä JV; Närhi TO J Biomed Mater Res A; 2006 May; 77(2):261-8. PubMed ID: 16392138 [TBL] [Abstract][Full Text] [Related]
47. Evolution of a mesoporous bioactive glass scaffold implanted in rat femur evaluated by (45)Ca labeling, tracing, and histological analysis. Sui B; Zhong G; Sun J ACS Appl Mater Interfaces; 2014 Mar; 6(5):3528-35. PubMed ID: 24444694 [TBL] [Abstract][Full Text] [Related]
48. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold. Chen X; Zhao Y; Geng S; Miron RJ; Zhang Q; Wu C; Zhang Y Int J Nanomedicine; 2015; 10():839-46. PubMed ID: 25653525 [TBL] [Abstract][Full Text] [Related]
49. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds. Zhang H; Ye XJ; Li JS Biomed Mater; 2009 Aug; 4(4):045007. PubMed ID: 19605959 [TBL] [Abstract][Full Text] [Related]
50. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing. Chou DT; Wells D; Hong D; Lee B; Kuhn H; Kumta PN Acta Biomater; 2013 Nov; 9(10):8593-603. PubMed ID: 23624222 [TBL] [Abstract][Full Text] [Related]
51. Pore characteristics of bone substitute materials assessed by microcomputed tomography. Klein M; Goetz H; Pazen S; Al-Nawas B; Wagner W; Duschner H Clin Oral Implants Res; 2009 Jan; 20(1):67-74. PubMed ID: 19126109 [TBL] [Abstract][Full Text] [Related]
53. Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. Wu C; Fan W; Chang J J Mater Chem B; 2013 Jun; 1(21):2710-2718. PubMed ID: 32260976 [TBL] [Abstract][Full Text] [Related]
54. In vivo evaluation of 13-93 bioactive glass scaffolds with trabecular and oriented microstructures in a subcutaneous rat implantation model. Fu Q; Rahaman MN; Bal BS; Kuroki K; Brown RF J Biomed Mater Res A; 2010 Oct; 95(1):235-44. PubMed ID: 20574983 [TBL] [Abstract][Full Text] [Related]
55. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. Fu Q; Rahaman MN; Bal BS; Bonewald LF; Kuroki K; Brown RF J Biomed Mater Res A; 2010 Oct; 95(1):172-9. PubMed ID: 20540099 [TBL] [Abstract][Full Text] [Related]
56. Magnetic mesoporous bioactive glass scaffolds: preparation, physicochemistry and biological properties. Zhu Y; Shang F; Li B; Dong Y; Liu Y; Lohe MR; Hanagata N; Kaskel S J Mater Chem B; 2013 Mar; 1(9):1279-1288. PubMed ID: 32260801 [TBL] [Abstract][Full Text] [Related]
57. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. El-Ghannam AR J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396 [TBL] [Abstract][Full Text] [Related]
58. Mesoporous bioactive glass scaffolds for efficient delivery of vascular endothelial growth factor. Wu C; Fan W; Chang J; Xiao Y J Biomater Appl; 2013 Sep; 28(3):367-74. PubMed ID: 22781919 [TBL] [Abstract][Full Text] [Related]
59. Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances. Baino F; Fiorilli S; Vitale-Brovarone C Acta Biomater; 2016 Sep; 42():18-32. PubMed ID: 27370907 [TBL] [Abstract][Full Text] [Related]
60. Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Bari A; Bloise N; Fiorilli S; Novajra G; Vallet-Regí M; Bruni G; Torres-Pardo A; González-Calbet JM; Visai L; Vitale-Brovarone C Acta Biomater; 2017 Jun; 55():493-504. PubMed ID: 28412552 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]